ÌâÄ¿ÄÚÈÝ
ÏÖ´ú³ÇÊдó¶àÊÇÆåÅÌʽ²¼¾Ö£¨Èç±±¾©µÀ·¼¸ºõ¶¼ÊǶ«Î÷ºÍÄϱ±×ßÏò£©£®ÔÚÕâÑùµÄ³ÇÊÐÖУ¬ÎÒÃÇ˵µÄÁ½µã¼äµÄ¾àÀëÍùÍù²»ÊÇÖ¸Á½µã¼äµÄÖ±Ïß¾àÀë£¨Î»ÒÆ£©£¬¶øÊÇʵ¼Ê·³Ì£¨Èçͼ1£©£®ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÎÒÃǶ¨ÒåA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã¼äµÄ¡°Ö±½Ç¾àÀ롱Ϊ£ºD£¨AB£©=|x1-x2|+|y1-y2|£®
£¨1£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈçͼ2£¬Ð´³öËùÓÐÂú×ãµ½ÔµãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±ê£®£¨¸ñµãÖ¸ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©
£¨2£©Çóµ½Á½¶¨µãF1¡¢F2µÄ¡°Ö±½Ç¾àÀ롱ºÍΪ¶¨Öµ2a£¨a£¾0£©µÄ¶¯µã¹ì¼£·½³Ì£¬²¢ÔÚÖ±½Ç×ø±êϵÄÚ×÷³ö¸Ã¶¯µãµÄ¹ì¼£
¢ÙF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬a=2
¢ÚF1£¨-1£¬-1£©£¬F2£¨1£¬1£©£¬a=2£»
¢ÛF1£¨-1£¬-1£©£¬F2£¨1£¬1£©£¬a=4£®
£¨3£©Ð´³öͬʱÂú×ãÒÔÏÂÁ½¸öÌõ¼þµÄ¡°¸ñµã¡±µÄ×ø±ê£¬²¢ËµÃ÷ÀíÓÉ£¨¸ñµãÖ¸ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©£®
¢Ùµ½A£¨-1£¬-1£©£¬B£¨1£¬1£©Á½µã¡°Ö±½Ç¾àÀ롱ÏàµÈ£»
¢Úµ½C£¨-2£¬-2£©£¬D£¨2£¬2£©Á½µã¡°Ö±½Ç¾àÀ롱ºÍ×îС£®
£¨1£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈçͼ2£¬Ð´³öËùÓÐÂú×ãµ½ÔµãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±ê£®£¨¸ñµãÖ¸ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©
£¨2£©Çóµ½Á½¶¨µãF1¡¢F2µÄ¡°Ö±½Ç¾àÀ롱ºÍΪ¶¨Öµ2a£¨a£¾0£©µÄ¶¯µã¹ì¼£·½³Ì£¬²¢ÔÚÖ±½Ç×ø±êϵÄÚ×÷³ö¸Ã¶¯µãµÄ¹ì¼£
¢ÙF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬a=2
¢ÚF1£¨-1£¬-1£©£¬F2£¨1£¬1£©£¬a=2£»
¢ÛF1£¨-1£¬-1£©£¬F2£¨1£¬1£©£¬a=4£®
£¨3£©Ð´³öͬʱÂú×ãÒÔÏÂÁ½¸öÌõ¼þµÄ¡°¸ñµã¡±µÄ×ø±ê£¬²¢ËµÃ÷ÀíÓÉ£¨¸ñµãÖ¸ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©£®
¢Ùµ½A£¨-1£¬-1£©£¬B£¨1£¬1£©Á½µã¡°Ö±½Ç¾àÀ롱ÏàµÈ£»
¢Úµ½C£¨-2£¬-2£©£¬D£¨2£¬2£©Á½µã¡°Ö±½Ç¾àÀ롱ºÍ×îС£®
¿¼µã£ºÁ½µã¼äµÄ¾àÀ빫ʽ
רÌ⣺ֱÏßÓëÔ²
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þ½áºÏͼÏóÄÜÇó³öËùÓÐÂú×ãµ½ÔµãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±ê£®
£¨2£©Ìõ¼þ¢Ù¹ì¼£·½³ÌΪ|x+1|+|x-1|+2|y|=4£¬Ìõ¼þ¢Ú¹ì¼£·½³ÌΪ£º|x+1|+|y+1|+|x-1|+|y-1|=4£¬Ìõ¼þ¢Û£º¹ì¼£·½³ÌΪ£º|x+1|+|y+1|+|x-1|+|y-1|=8£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨3£©Âú×ãÌõ¼þµÄ¸ñµãÓУ¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬£¨1£¬-1£©£¬£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£¬¶ÔÓÚ¢Ù£¬Âú×ã|x+1|+|y+1|=|x-1|+|y-1|£¬´Ó¶øp¡Ê{£¨x£¬y£©|x+y=0£¬-1¡Üx¡Ü1»òx¡Ü-1£¬y¡Ý1»òx¡Ý1£¬y¡Ü-1}£¬¶ÔÓÚ¢Ú£¬D£¨PA£©+D£¨PB£©=|x+2|+|y+2|+|x-2|+|y-2|¡Ý|x+2+2-x|+|y+2+2-y|=8£¬´Ó¶øµãP¡Ê{£¨x£¬y£©|-2¡Üx¡Ü2£¬-2¡Üy¡Ü2}£®ÓÉ´ËÄÜÇó³ö¸ñµãµÄ×ø±ê£®
£¨2£©Ìõ¼þ¢Ù¹ì¼£·½³ÌΪ|x+1|+|x-1|+2|y|=4£¬Ìõ¼þ¢Ú¹ì¼£·½³ÌΪ£º|x+1|+|y+1|+|x-1|+|y-1|=4£¬Ìõ¼þ¢Û£º¹ì¼£·½³ÌΪ£º|x+1|+|y+1|+|x-1|+|y-1|=8£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨3£©Âú×ãÌõ¼þµÄ¸ñµãÓУ¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬£¨1£¬-1£©£¬£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£¬¶ÔÓÚ¢Ù£¬Âú×ã|x+1|+|y+1|=|x-1|+|y-1|£¬´Ó¶øp¡Ê{£¨x£¬y£©|x+y=0£¬-1¡Üx¡Ü1»òx¡Ü-1£¬y¡Ý1»òx¡Ý1£¬y¡Ü-1}£¬¶ÔÓÚ¢Ú£¬D£¨PA£©+D£¨PB£©=|x+2|+|y+2|+|x-2|+|y-2|¡Ý|x+2+2-x|+|y+2+2-y|=8£¬´Ó¶øµãP¡Ê{£¨x£¬y£©|-2¡Üx¡Ü2£¬-2¡Üy¡Ü2}£®ÓÉ´ËÄÜÇó³ö¸ñµãµÄ×ø±ê£®
½â´ð£º
½â£º£¨1£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈçͼ2£¬
ËùÓÐÂú×ãµ½ÔµãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±êÓУº
£¨0£¬2£¬£©£¬£¨1£¬1£©£¬£¨2£¬0£©£¬£¨1£¬-1£©£¬
£¨0£¬-2£©£¬£¨-1£¬-1£©£¬£¨-2£¬0£©£¬£¨-1£¬1£©£®
£¨2£©Ìõ¼þ¢Ù¹ì¼£·½³ÌΪ|x+1|+|x-1|+2|y|=4£¬
µ±x¡Ü-1£¬y¡Ý0ʱ£¬x-y+2=0£»
µ±x¡Ü-1£¬y£¼0ʱ£¬x+y+2=0£»
µ±-1£¼x£¼1£¬y¡Ý0ʱ£¬y=1£»
µ±-1£¼x£¼1£¬y£¼0ʱ£¬y=-1£»
µ±x¡Ý1£¬y¡Ý0ʱ£¬x+y-2=0£»
µ±x¡Ý1£¬y£¼0ʱ£¬x-y-2=0£®
Ìõ¼þ¢Ú¹ì¼£·½³ÌΪ£º
|x+1|+|y+1|+|x-1|+|y-1|=4£¬
µ±x¡Ü-1£¬y¡Ý1ʱ£¬£¨x£¬y£©=£¨-1£¬1£©£»
µ±x¡Ü-1£¬-1¡Üy£¼1ʱ£¬x=-1£»
µ±-1£¼x£¼1£¬y¡Ý1ʱ£¬y=1£»
ÓɶԳÆÐÔ¿ÉµÃÆäËû²¿·ÖͼÐΣ®
Ìõ¼þ¢Û£º¹ì¼£·½³ÌΪ£º
|x+1|+|y+1|+|x-1|+|y-1|=8£¬
µ±x¡Ü-1£¬y¡Ý1ʱ£¬x-y+3=0£»
µ±x¡Ü-1£¬-1¡Üy£¼1ʱ£¬x+3=0£»
µ±-1£¼x£¼1£¬y¡Ý1ʱ£¬y=3£®
ÓɶԳÆÐÔ¿ÉµÃÆäËû²¿·ÖͼÐΣ®
£¨3£©Èçͼ£¬Âú×ãÌõ¼þµÄ¸ñµãÓУ¨-2£¬2£©£¬£¨-1£¬2£©£¬
£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬£¨1£¬-1£©£¬
£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£¬
¶ÔÓÚ¢Ù£¬ÉèP£¨x£¬y£©Âú×ãµ½A£¨-1£¬-1£©¡¢B£¨1£¬1£©Á½µã
¡°Ö±½Ç¾àÀ롱ÏàµÈ£¬
¼´Âú×ã|x+1|+|y+1|=|x-1|+|y-1|£¬
½âµÃp¡Ê{£¨x£¬y£©|x+y=0£¬-1¡Üx¡Ü1»òx¡Ü-1£¬y¡Ý1»òx¡Ý1£¬y¡Ü-1}£¬Èçͼ£®
¶ÔÓÚ¢Ú£¬ÉèP£¨x£¬y£©µ½C£¨-2£¬-2£©£¬D£¨2£¬2£©Á½µã¡°Ö±½Ç¾àÀ롱ºÍ×îС£¬
¼´D£¨PA£©+D£¨PB£©=|x+2|+|y+2|+|x-2|+|y-2|
=|x+2|+|x-2|+|y+2|+|y-2|
¡Ý|x+2+2-x|+|y+2+2-y|=8£¬
µ±ÇÒ½öµ±-2¡Üx¡Ü2ÇÒ-2¡Üy¡Ü2µÈºÅ³ÉÁ¢£¬
¿ÉµÃµãP¡Ê{£¨x£¬y£©|-2¡Üx¡Ü2£¬-2¡Üy¡Ü2}£®Èçͼ
¹ÊͬʱÂú×ãÌõ¼þ¢Ù¢ÚµÄ¸ñµãµÄ×ø±êÊÇ£º
£¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬
£¨1£¬-1£©£¬£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£®
ËùÓÐÂú×ãµ½ÔµãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±êÓУº
£¨0£¬2£¬£©£¬£¨1£¬1£©£¬£¨2£¬0£©£¬£¨1£¬-1£©£¬
£¨0£¬-2£©£¬£¨-1£¬-1£©£¬£¨-2£¬0£©£¬£¨-1£¬1£©£®
£¨2£©Ìõ¼þ¢Ù¹ì¼£·½³ÌΪ|x+1|+|x-1|+2|y|=4£¬
µ±x¡Ü-1£¬y¡Ý0ʱ£¬x-y+2=0£»
µ±x¡Ü-1£¬y£¼0ʱ£¬x+y+2=0£»
µ±-1£¼x£¼1£¬y¡Ý0ʱ£¬y=1£»
µ±-1£¼x£¼1£¬y£¼0ʱ£¬y=-1£»
µ±x¡Ý1£¬y¡Ý0ʱ£¬x+y-2=0£»
µ±x¡Ý1£¬y£¼0ʱ£¬x-y-2=0£®
Ìõ¼þ¢Ú¹ì¼£·½³ÌΪ£º
|x+1|+|y+1|+|x-1|+|y-1|=4£¬
µ±x¡Ü-1£¬y¡Ý1ʱ£¬£¨x£¬y£©=£¨-1£¬1£©£»
µ±x¡Ü-1£¬-1¡Üy£¼1ʱ£¬x=-1£»
µ±-1£¼x£¼1£¬y¡Ý1ʱ£¬y=1£»
ÓɶԳÆÐÔ¿ÉµÃÆäËû²¿·ÖͼÐΣ®
Ìõ¼þ¢Û£º¹ì¼£·½³ÌΪ£º
|x+1|+|y+1|+|x-1|+|y-1|=8£¬
µ±x¡Ü-1£¬y¡Ý1ʱ£¬x-y+3=0£»
µ±x¡Ü-1£¬-1¡Üy£¼1ʱ£¬x+3=0£»
µ±-1£¼x£¼1£¬y¡Ý1ʱ£¬y=3£®
ÓɶԳÆÐÔ¿ÉµÃÆäËû²¿·ÖͼÐΣ®
£¨3£©Èçͼ£¬Âú×ãÌõ¼þµÄ¸ñµãÓУ¨-2£¬2£©£¬£¨-1£¬2£©£¬
£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬£¨1£¬-1£©£¬
£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£¬
¶ÔÓÚ¢Ù£¬ÉèP£¨x£¬y£©Âú×ãµ½A£¨-1£¬-1£©¡¢B£¨1£¬1£©Á½µã
¡°Ö±½Ç¾àÀ롱ÏàµÈ£¬
¼´Âú×ã|x+1|+|y+1|=|x-1|+|y-1|£¬
½âµÃp¡Ê{£¨x£¬y£©|x+y=0£¬-1¡Üx¡Ü1»òx¡Ü-1£¬y¡Ý1»òx¡Ý1£¬y¡Ü-1}£¬Èçͼ£®
¶ÔÓÚ¢Ú£¬ÉèP£¨x£¬y£©µ½C£¨-2£¬-2£©£¬D£¨2£¬2£©Á½µã¡°Ö±½Ç¾àÀ롱ºÍ×îС£¬
¼´D£¨PA£©+D£¨PB£©=|x+2|+|y+2|+|x-2|+|y-2|
=|x+2|+|x-2|+|y+2|+|y-2|
¡Ý|x+2+2-x|+|y+2+2-y|=8£¬
µ±ÇÒ½öµ±-2¡Üx¡Ü2ÇÒ-2¡Üy¡Ü2µÈºÅ³ÉÁ¢£¬
¿ÉµÃµãP¡Ê{£¨x£¬y£©|-2¡Üx¡Ü2£¬-2¡Üy¡Ü2}£®Èçͼ
¹ÊͬʱÂú×ãÌõ¼þ¢Ù¢ÚµÄ¸ñµãµÄ×ø±êÊÇ£º
£¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬
£¨1£¬-1£©£¬£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£®
µãÆÀ£º±¾Ì⿼²é¸ñµã×ø±êµÄÇ󷨣¬¿¼²é¹ì¼£·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ·ÖÀàÌÖÂÛ˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªPÊÇÍÖÔ²
+
=1ÉϵÚÒ»ÏóÏÞÄÚÈÎÒ»µã£¬¹ýµãP×÷Ô²x2+y2=16µÄÁ½ÌõÇÐÏßPA¡¢PB£¨µãA¡¢BÊÇÇе㣩£¬Ö±ÏßAB·Ö±ð½»xÖá¡¢yÖáÓÚµãMN£¬Ôò¡÷MONµÄÃæ»ýS¡÷MON£¨OÊÇ×ø±êԵ㣩µÄ×îСֵÊÇ£¨¡¡¡¡£©
| x2 |
| 25 |
| y2 |
| 16 |
A¡¢
| ||
| B¡¢14 | ||
C¡¢
| ||
D¡¢
|
Èôº¯Êýf£¨x£©=
£¨a£¬b¡ÊR£©¶¨ÒåÓòΪR£¬Ôò3a+bµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| (a+2)x2+bx+a+2 |
| A¡¢[-2£¬+¡Þ£© |
| B¡¢[-6£¬+¡Þ£© |
| C¡¢[6£¬+¡Þ£© |
| D¡¢[0£¬+¡Þ£© |