题目内容
10.若$\left\{\begin{array}{l}{{a}^{3}-3{a}^{2}+4a=2016}\\{{b}^{3}-3{b}^{2}+4b=-2012}\end{array}\right.$,求a+b的值.分析 设f(x)=x3-3x2+4x,求出导数,判断单调性,计算f(x)+f(2-x)=4,可得函数f(x)关于点(1,2)对称.由f(a)+f(b)=4,可得a+b的值.
解答 解:设f(x)=x3-3x2+4x,
可得f′(x)=3x2-6x+4=3(x-1)2+1>0,
即有f(x)在R上递增,
又f(2-x)=(2-x)3-3(2-x)2+4(2-x),
可得f(x)+f(2-x)=(x+2-x)[x2+(2-x)2-x(2-x)]-3[x2+(2-x)2]+8
=2(3x2-6x+4)-3(2x2-4x+4)+8=4,
即函数f(x)关于点(1,2)对称.
由f(a)+f(b)=a3-3a2+4a+(b3-3b2+4b)=2016-2012=4,
可得f(b)=f(2-a),即有b=2-a,
则a+b=2.
点评 本题考查两数和的求法,注意运用构造函数法,运用导数判断单调性,以及函数的对称性,判断f(x)关于点(1,2)对称是解题的关键,属于中档题.
练习册系列答案
相关题目
15.若点(1,a)到直线y=x+1的距离是$\frac{{3\sqrt{2}}}{2}$,则实数a为( )
| A. | -1 | B. | 5 | C. | -1或5 | D. | -3或3 |
2.若函数y=f(x)是定义在R上的奇函数,且在区间(-∞,0]上是减函数,则不等式f(lnx)<-f(1)的解集为( )
| A. | (e,+∞) | B. | (${\frac{1}{e}$,+∞) | C. | (${\frac{1}{e}$,e) | D. | (0,$\frac{1}{e}$) |
19.调查200名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如表
(1)表中s,t的值分别是多少;
(2)试问:有吸烟习惯与患慢性气管炎病是否有关?
| 患慢性气管炎 | 未患慢性气管炎 | 总计 | |
| 吸烟 | s | 30 | 100 |
| 不吸烟 | 35 | t | 100 |
| 合计 | 105 | 95 | 200 |
(2)试问:有吸烟习惯与患慢性气管炎病是否有关?