题目内容

某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽 取甲、乙两种方式培育的树苗各20株,测量其髙度,得到的茎叶图如图(单位:cm):

(Ⅰ)依茎叶图判断用哪种方法培育的树苗的平均高度大?
(Ⅱ)现从用甲种方式培育的高度不低于80cm的树苗中随机抽取两株,求高度为86cm的树苗至少有1株被抽中的概率;
(Ⅲ)如果规定高度不低于85cm的为生长优秀,请填写下面的2x2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为树苗高度与培育方式有关?”
甲方式乙方式合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考点:独立性检验的应用
专题:综合题,概率与统计
分析:(Ⅰ)用甲种方式培育的树苗的高度集中于60~90cm之间,而用乙种方式培育的树苗的高度集中于80~100 cm之间,即可得出结论;
(Ⅱ)利用列举法确定基本事件,即可求高度为86cm的树苗至少有1株被抽中的概率;
(Ⅲ)根据高度不低于85cm的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.
解答: 解:(Ⅰ)用甲种方式培育的树苗的高度集中于60~90cm之间,而用乙种方式培育的树苗的高度集中于80~100 cm之间,所以用乙种方式培养的树苗的平均高度大.…(3分)
(Ⅱ)记高度为86 cm的树苗为A,B,其他不低于80 cm的树苗为C,D,E,F,“从用甲种方式培育的高度不低于80 cm的树苗中随机抽取两株”,基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15个.…(5分)
“高度为86 cm的树苗至少有一株被抽中”所组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F)共9个,…(7分)
故所求概率P=
9
15
=
3
5
…(8分)
甲方式乙方式合计
优秀31013
不优秀171027
合计202040
(Ⅲ)K2=
40×(3×10-10×17)2
13×27×20×20
≈5.584>5.024,…(11分)
因此在犯错误的概率不超过0.025的前提下可以认为树苗的高度与培育方式有关.…(12分)
点评:本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网