ÌâÄ¿ÄÚÈÝ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4-8sin2$\frac{¦È}{2}$£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦È}\\{y=1+tsin¦È}\end{array}\right.$ £¨tΪ²ÎÊý£¬¦È¡Ê[0£¬¦Ð]£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬µãMµÄÖ±½Ç×ø±êΪ£¨2£¬1£©£¬Èô$\overrightarrow{MA}$=-2$\overrightarrow{MB}$£¬ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì£®

·ÖÎö £¨1£©ÀûÓöþ±¶½Ç¹«Ê½»¯¼ò¼«×ø±ê·½³Ì£¬ÔÙ¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏߵįÕͨ·½³ÌµÃ³ö¹ØÓÚ²ÎÊýµÄÒ»Ôª¶þ´Î·½³Ì£¬¸ù¾Ý²ÎÊýµÄ¼¸ºÎÒâÒåµÃ³öÁ½¸ù£¬Çó³ösin¦È£¬cos¦È£¬´Ó¶øÐ´³öÖ±ÏßlµÄ²ÎÊý·½³Ì£®

½â´ð ½â£º£¨1£©¡ß¦Ñ=4-8sin2$\frac{¦È}{2}$£¬¡à¦Ñ=4+4cos¦È-4=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£®
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4x£®
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³ÌµÃ£ºt2+2sin¦È•t-3=0£®
¡àt1t2=-3£¬t1+t2=-2sin¦È£®
¡ß$\overrightarrow{MA}$=-2$\overrightarrow{MB}$£¬¡àt1=-2t2£¬½âµÃt1=-$\sqrt{10}$£®t2=$\frac{\sqrt{10}}{2}$£¬»òt1=$\sqrt{10}$£¬t2=-$\frac{\sqrt{10}}{2}$£®
¡àt1+t2=¡À$\frac{\sqrt{10}}{2}$£®
¡à-2sin¦È=$¡À\frac{\sqrt{10}}{2}$£¬¡ß¦È¡Ê[0£¬¦Ð]£¬¡àsin¦È=$\frac{\sqrt{10}}{4}$£®
¡àcos¦È=$\frac{\sqrt{6}}{4}$»ò-$\frac{\sqrt{6}}{4}$£®
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{6}}{4}t}\\{y=1+\frac{\sqrt{10}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©»ò$\left\{\begin{array}{l}{x=2-\frac{\sqrt{6}}{4}t}\\{y=1+\frac{\sqrt{10}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄת»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒå¼°Ó¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø