题目内容
已知cosθ=cos30°,则θ等于( )
| A、30° |
| B、k•360°+30°(k∈Z) |
| C、k•360°±30°(k∈Z) |
| D、k•180°+30°(k∈Z) |
考点:三角方程,终边相同的角
专题:三角函数的求值
分析:直接利用三角函数的值,求出结果即可.
解答:
解:因为cosθ=cos30°=
,
所以k•360°±30°(k∈Z).
故选:C.
| 1 |
| 2 |
所以k•360°±30°(k∈Z).
故选:C.
点评:本题考查三角方程的求解,象限三角函数的符号的判断,基本知识的考查.
练习册系列答案
相关题目
下列函数中,图象关于x=
对称且为偶函数的是( )
| π |
| 2 |
| A、y=sin2x | ||
B、y=sin(
| ||
| C、y=cosx | ||
| D、y=tanx |
在一次智力竞赛中,每位参赛者要从5道题中不放回地依次抽取2道题作答,已知5道题中包含自然科学题3道,人文科学题2道.则参赛者甲在第一次抽到自然科学题的条件下,第二次还抽到自然科学题的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在数列{an}中,已知a1+a2+…+an=2n-1,则a12+a22+…+an2等于( )
A、
| ||
| B、4n-1 | ||
C、
| ||
| D、(2n-1)2 |
已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为( )
A、
| ||
B、
| ||
| C、1 | ||
| D、3 |
复数z=i2(1+i)的共轭复数是( )
| A、-1-i | B、-1+i |
| C、1-i | D、1+i |
已知a,b∈R+,那么“ab+1>a+b”是“a2+b2<1”的( )
| A、充要条件 |
| B、必要不充分条件 |
| C、充分不必要条件 |
| D、既不充分也不必要条件 |
直线
ax+by=1与圆x2+y2=2相交于A,B两点(a,b∈R),且△AOB是直角三角形(O是坐标原点),则点P(a,b)的轨迹方程为( )
| 3 |
| A、x2+3y2=1 |
| B、3x2-y2=1 |
| C、3x2+y2=1 |
| D、x2-3y2=1 |