题目内容
【题目】已知函数
.(
)
(1)若
在区间
上单调递减,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【答案】(1)
(2)![]()
【解析】
(1)根据函数在
上单调递减转化为
在
上恒成立问题,再通过不等式恒成立条件求解即可
(2)令
,根据在区间
上,函数
的图象恒在曲线
下方转化成
在区间
上恒成立,求得
,分别对
和
进行分类讨论,结合
正负判断
单调性,再结合恒成立问题进一步求解即可
解:(1)
在区间
上单调递减,
则
在区间
上恒成立.
即
,而当
时,
,故
.
所以
.
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
①若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上,
有
,也不合题意;
②若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
综合①②可知,当
时,函数
的图象恒在直线
下方.
【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度
(单位:分贝)与声音能量
(单位:
)之间的关系,将测量得到的声音强度
和声音能量
(
,2,…,10)数据作了初步处理,得到如图散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
.
(1)根据散点图判断,
与
哪一个适宜作为声音强度
关于声音能量
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据表中数据,求声音强度关于声音能量的回归方程.
参考公式:
;![]()
【题目】菜市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图1所示的频率分布南方匿,接着调查了该市2018年1月﹣2019年1月期间当月在售二手房均价
(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).
![]()
(1)试估计该市市民的平均购房面积
.
(2)现采用分层抽样的方法从购房耐积位于
的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在
的概率.
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值,如表所示:
|
| |
|
|
|
|
| |
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到
).
参考数据:
,
,
,
,
,
,
,
.参考公式:相关指数
.