题目内容

【题目】设函数f(x)=|x﹣a|+3x,其中a>0. (Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.

【答案】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为 |x﹣1|≥2.
由此可得x≥3或x≤﹣1.
故不等式f(x)≥3x+2的解集为
{x|x≥3或x≤﹣1}.
(Ⅱ)由f(x)≤0得
|x﹣a|+3x≤0
此不等式化为不等式组


因为a>0,所以不等式组的解集为{x|x }
由题设可得﹣ =﹣1,故a=2
【解析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.
【考点精析】认真审题,首先需要了解绝对值不等式的解法(含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网