题目内容
17.在数列{an}中,已知a1>1,an+1=an2-an+1(n∈N*),且$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2.则当a2016-4a1取得最小值时,a1的值为=$\frac{5}{4}$.分析 a1>1,an+1=an2-an+1(n∈N*),变形为an+1-1=an(an-1),两边取倒数可得:$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n}}$,即$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,利用“裂项求和”方法、基本不等式的性质即可得出.
解答 解:∵a1>1,an+1=an2-an+1(n∈N*),
∴an+1-1=an(an-1),
两边取倒数可得:$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n}}$,即$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,
∴2=$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=$(\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1})$+$(\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1})$+…+$(\frac{1}{{a}_{2015}-1}-\frac{1}{{a}_{2016}-1})$=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{2016}-1}$,
化为:a2016=$\frac{2-{a}_{1}}{3-2{a}_{1}}$,
∴a2016-4a1=$\frac{2-{a}_{1}}{3-2{a}_{1}}$-4a1=$\frac{1}{6-4{a}_{1}}$+(6-4a1)-$\frac{11}{2}$≥2-$\frac{11}{2}$=-$\frac{7}{2}$.当且仅当a1=$\frac{5}{4}$>1时取等号.
∴a1的值为:$\frac{5}{4}$.
故答案为:$\frac{5}{4}$.
点评 本题考查了递推关系、“裂项求和”方法、基本不等式的性质,考查了推理能力与计算能力,属于难题.
| A. | {4} | B. | {1,5,7} | C. | {1,2,5,7,8} | D. | {1,2,4,5,7,8} |