题目内容

13.如图,点E是菱形ABCD所在平面外一点,EA⊥平面ABCD,EA∥FB∥GD,∠ABC=60°,EA=AB=2BF=2GD.
(I)求证:平面EAC⊥平面ECG;
(II)求二面角B-EC-F的余弦值.

分析 (I)连结BD交AC于O,取EC的中点M,连结OM,GM,建立空间坐标系,利用向量证明GM⊥AE,GM⊥AC可得GM⊥平面EAC,于是平面平面EAC⊥平面ECG;
(II)求出平面EBC和平面BCF的法向量,计算两法向量的夹角即可得出二面角的大小.

解答 (I)证明:连结BD交AC于O,取EC的中点M,连结OM,GM,
∵O,M分别是AC,EC的中点,
∴OM∥EA,又∵EA⊥平面ABCD,
∴OM⊥平面ABCD,
以O为原点,以OB,OC,OM为坐标轴建立空间坐标系如图所示:
设BF=1,则A(0,-1,0),C(0,1,0),E(0,-1,2),D(-$\sqrt{3}$,0,0),
G(-$\sqrt{3}$,0,1),M(0,0,1),
∴$\overrightarrow{AC}$=(0,2,0),$\overrightarrow{AE}$=(0,0,2),$\overrightarrow{GM}$=($\sqrt{3}$,0,0),
∴$\overrightarrow{GM}•\overrightarrow{AC}$=0,$\overrightarrow{GM}•\overrightarrow{AE}$=0,
∴GM⊥AC,GM⊥AE,又AE∩AC=A,
∴GM⊥平面EAC,又GM?平面ECG,
∴平面EAC⊥平面ECG.
(II)解:B($\sqrt{3}$,0,0),F($\sqrt{3}$,0,1),
∴$\overrightarrow{EC}$=(0,2,-2),$\overrightarrow{EB}$=($\sqrt{3}$,1,-2),$\overrightarrow{EF}$=($\sqrt{3}$,1,-1),
设平面BEC的法向量为$\overrightarrow{m}$=(x1,y1,z1),平面FEC的法向量为$\overrightarrow{n}$=(x2,y2,z2),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EC}=0}\\{\overrightarrow{m}•\overrightarrow{EB}=0}\end{array}\right.$,$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EC}=0}\\{\overrightarrow{n}•\overrightarrow{EF}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2{y}_{1}-2{z}_{1}=0}\\{\sqrt{3}{x}_{1}+{y}_{1}-2{z}_{1}=0}\end{array}\right.$,$\left\{\begin{array}{l}{2{y}_{2}-2{z}_{2}=0}\\{\sqrt{3}{x}_{2}+{y}_{2}-{z}_{2}=0}\end{array}\right.$,
令x1=$\sqrt{3}$得$\overrightarrow{m}$=($\sqrt{3}$,3,3),令y2=1得$\overrightarrow{n}$=(0,1,1).
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{6}{\sqrt{21}•\sqrt{2}}$=$\frac{\sqrt{42}}{7}$.
∴二面角B-PC-F的余弦值为$\frac{\sqrt{42}}{7}$.

点评 本题考查了面面垂直的判定,空间向量在立体几何中的应用,空间角的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网