题目内容

13.已知a>0且a≠1,f(x)+g(x)=ax-a-x+2,其中f(x)为R上的奇函数,g(x)为R上的偶函数,若g(2)=a,则f(2)的值为(  )
A.2B.1C.$\frac{17}{4}$D.$\frac{15}{4}$

分析 由已知中定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2根,据函数奇偶性的性质,得到关于f(x),g(x)的另一个方程f(-x)+g(-x)=a-x-ax+2,并由此求出f(x),g(x)的解析式,再根据g(2)=a=2求出a值后,即可得到f(2)的值.

解答 解:∵f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数
∴f(-x)=-f(x),g(-x)=g(x)
∵f(x)+g(x)=ax-a-x+2 ①
∴f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2 ②
①②联立解得f(x)=ax-a-x,g(x)=2
由已知g(2)=a=2
∴a=2,f(x)=2x-2-x
∴f(2)=4-$\frac{1}{4}$=$\frac{15}{4}$.
故选:D.

点评 本题考查的知识点是函数解析式的求法--方程组法,函数奇偶性的性质,其中利用奇偶性的性质,求出f(x),g(x)的解析式,再根据g(2)=a=2求出a值,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网