题目内容
14.不等式$\frac{{{x^2}-9}}{x-2}≥0$的解集是( )| A. | {x|-3≤x≤3} | B. | {x|-3≤x≤2或x≥3} | C. | {x|-3≤x<2或x≥3} | D. | {x|x≤-3或2<x≤3} |
分析 不等式$\frac{{{x^2}-9}}{x-2}≥0$,即为$\left\{\begin{array}{l}{{x}^{2}-9≥0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}-9≤0}\\{x-2<0}\end{array}\right.$,由二次不等式和一次不等式的解法,计算即可得到所求解集.
解答 解:不等式$\frac{{{x^2}-9}}{x-2}≥0$,
即为$\left\{\begin{array}{l}{{x}^{2}-9≥0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}-9≤0}\\{x-2<0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x≥3或x≤-3}\\{x>2}\end{array}\right.$或$\left\{\begin{array}{l}{-3≤x≤3}\\{x<2}\end{array}\right.$,
即为x≥3或-3≤x<2,
可得解集为{x|x≥3或-3≤x<2},
故选:C.
点评 本题考查分式不等式的解法,注意运用等价变形,转化为二次不等式和一次不等式的解法,考查运算能力,属于基础题.
练习册系列答案
相关题目
4.为了得到$y=cos({\frac{1}{2}x+\frac{π}{6}})$的图象,只需将y=cos$\frac{1}{2}$x的图象( )
| A. | 向左平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向左平移$\frac{π}{3}$个单位长度 | D. | 向右平移$\frac{π}{3}$个单位长度 |
9.函数y=cos2x+sinx的值域为( )
| A. | [-1,1] | B. | [1,$\frac{5}{4}$] | C. | [-1,$\frac{5}{4}$] | D. | [0,1] |
19.已知$\overrightarrow{a}$、$\overrightarrow{b}$为两个单位向量,则下列四个命题中正确的是( )
| A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$ | C. | $\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$ | D. | 若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$ |
3.二项式(a+b)2n的展开式的项数是( )
| A. | 2n | B. | 2n+1 | C. | 2n-1 | D. | 2(n+1) |