题目内容

13.已知函数$f(x)=-\frac{1}{a}+\frac{2}{x}(x>0)$
(1)判断f(x)在(0,+∞)上的增减性,并证明你的结论
(2)解关于x的不等式f(x)>0
(3)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范围.

分析 (1)利用导数与函数单调性的关系进行判断与证明;
(2)求出f(x)=0的解,再根据f(x)的单调性得出不等式的解;
(3)令g(x)=f(x)+2x,求出g(x)的最小值,令gmin(x)≥0即可解出a的范围.

解答 解:(1)f(x)在(0,+∞)上是减函数,
证明:f′(x)=-$\frac{2}{{x}^{2}}$<0,
∴f(x)在(0,+∞)上是减函数.
(2)①若a<0,则f(x)=-$\frac{1}{a}+\frac{2}{x}$>0恒成立,
∴f(x)>0的解为(0,+∞);
②若a>0,令f(x)=-$\frac{1}{a}+\frac{2}{x}$=0得x=2a.
∵f(x)在(0,+∞)上是减函数,
∴f(x)>0的解为(0,2a).
综上,当a<0时,不等式f(x)>0的解集是(0,+∞),
当a>0时,不等式f(x)>0的解集是(0,2a).
(3)令g(x)=f(x)+2x=-$\frac{1}{a}+\frac{2}{x}$+2x,
则g′(x)=2-$\frac{2}{{x}^{2}}$=2(1-$\frac{1}{{x}^{2}}$),
∴当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,
∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
∴gmin(x)=g(1)=-$\frac{1}{a}$+4,
∵f(x)+2x≥0在(0,+∞)上恒成立,
∴-$\frac{1}{a}$+4≥0,解得a<0或a≥$\frac{1}{4}$.
∴a的取值范围是{a|a<0或a≥$\frac{1}{4}$}.

点评 本题考查了函数单调性的证明与应用,函数最值的计算,函数恒成立问题研究,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网