题目内容
20.复数z=$\frac{1+2i}{1+i}$(i为虚数单位)在复平面内对应点的坐标是( )| A. | ($\frac{3}{2}$,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,$\frac{3}{2}$) | C. | ($\frac{3}{2}$,-$\frac{1}{2}$) | D. | (-$\frac{3}{2}$,$\frac{1}{2}$) |
分析 直接由复数代数形式的乘除运算化简复数z,求出复数z在复平面内对应点的坐标得答案.
解答 解:z=$\frac{1+2i}{1+i}$=$\frac{(1+2i)(1-i)}{(1+i)(1-i)}=\frac{3+i}{2}=\frac{3}{2}+\frac{1}{2}i$,
则复数z在复平面内对应点的坐标是:($\frac{3}{2}$,$\frac{1}{2}$).
故选:A.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
10.某树苗培育基地为了解其基地内榕树树苗的长势情况,随机抽取了100株树苗,分别测出它们的高度(单位:cm),并将所得数据分组,画出频率分布表如表:
(1)求如表中a、b的值;
(2)估计该基地榕树树苗平均高度;
(3)若将这100株榕树苗高度分布的频率视为概率,从培育基地的榕树苗中随机选出4株,其中在[104,106)内的有X株,求X的分布列和期望.
| 组 距 | 频 数 | 频 率 |
| [100,102) | 16 | 0.16 |
| [102,104) | 18 | 0.18 |
| [104,106) | 25 | 0.25 |
| [106,108) | a | b |
| [108,110) | 6 | 0.06 |
| [110,112) | 3 | 0.03 |
| 合计 | 100 | 1 |
(2)估计该基地榕树树苗平均高度;
(3)若将这100株榕树苗高度分布的频率视为概率,从培育基地的榕树苗中随机选出4株,其中在[104,106)内的有X株,求X的分布列和期望.
11.设全集∪={a,b,c,d},集合M={ a,c,d },N={b,d},则(∁UM)∩N等于( )
| A. | {b} | B. | {d} | C. | {a,c} | D. | {b,d} |
9.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,则a2014的值为( )
| A. | $\frac{5}{7}$ | B. | $\frac{6}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{1}{7}$ |