题目内容

5.设函数f(x)在点x=a处可导,试用a、f(a)和f′(a)表示$\underset{lim}{x→a}$$\frac{af(x)-xf(a)}{x-a}$.

分析 利用导数的概念变形得出$\underset{lim}{x→a}$$\frac{af(x)-af(a)+af(a)-xf(a)}{x-a}$=$\underset{lim}{x→a}$[a$\frac{f(x)-f(a)}{x-a}$-f(a)],根据极限式子可判断为af′(a)-f(a).

解答 解:∵$\underset{lim}{x→a}$$\frac{af(x)-xf(a)}{x-a}$=$\underset{lim}{x→a}$$\frac{af(x)-af(a)+af(a)-xf(a)}{x-a}$=$\underset{lim}{x→a}$[a$\frac{f(x)-f(a)}{x-a}$-f(a)]=a$\underset{lim}{x→a}$$\frac{f(x)-f(a)}{x-a}$-f(a)=af′(a)-f(a).
∴$\underset{lim}{x→a}$$\frac{af(x)-xf(a)}{x-a}$=af′(a)-f(a).

点评 本题考查了导数的概念,性质,运用,关键是恒等变形得出需要的式子,可判断出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网