题目内容
14.设平行四边形ABCD中,AB=4,BC=6,∠ABC=60°,则平行四边形ABCD的面积为12$\sqrt{3}$.分析 根据三角形的面积公式代值计算即可.
解答 解:设平行四边形ABCD中,AB=4,BC=6,∠ABC=60°,
则平行四边形ABCD的面积S=2S△ABC=2×$\frac{1}{2}$×4×6×$\frac{\sqrt{3}}{2}$=12$\sqrt{3}$,
故答案为:12$\sqrt{3}$.
点评 本题考查了三角形的面积公式,属于基础题.
练习册系列答案
相关题目
3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分別为A,B,点M,N是椭圆C上关于长轴对称的两点,若直线AM与BN相交于点P,则点P的轨迹方程是( )
| A. | x=±a(y≠0) | B. | y2=2b(|x|-a)(y≠0) | ||
| C. | x2+y2=a2+b2(y≠0) | D. | $\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(y≠0) |
4.设全集U=R,集合M={x|x2+x-2>0},$N=\left\{{x|{{(\frac{1}{2})}^{x-1}}≥2}\right\}$,则(∁UM)∩N=( )
| A. | [-2,0] | B. | [-2,1] | C. | [0,1] | D. | [0,2] |
9.已知P1(2,-1),P2(0,5),点P在线段P1P2的延长线上,且|$\overrightarrow{{P}_{1}P}$|=2|$\overrightarrow{P{P}_{2}}$|,则点P的坐标( )
| A. | (4,-7) | B. | (-2,11) | C. | (4,-7)和(-2,11) | D. | (-2,11)和(1,2) |
3.已知复数$z=\frac{5}{2-i}$(i是复数单位),则复数z为( )
| A. | 2+i | B. | -2+i | C. | -2-i | D. | 2-i |