题目内容

15.设数列{an}中,a1=3,$\frac{1}{3}{a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),则an=(3n-2)•3n

分析 $\frac{1}{3}{a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),可得$\frac{{a}_{n}}{{3}^{n}}-\frac{{a}_{n-1}}{{3}^{n-1}}$=3,利用等差数列的通项公式即可得出.

解答 解:∵$\frac{1}{3}{a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),∴$\frac{{a}_{n}}{{3}^{n}}-\frac{{a}_{n-1}}{{3}^{n-1}}$=3,
∴数列$\{\frac{{a}_{n}}{{3}^{n}}\}$是等差数列,公差为3,首项为1.
∴$\frac{{a}_{n}}{{3}^{n}}$=1+3(n-1)=3n-2,
则an=(3n-2)•3n
故答案为:(3n-2)•3n

点评 本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网