题目内容
【题目】如图,
,
分别为椭圆
的焦点,直线
:
与
轴交于
点,若
,且
.
![]()
(1)求椭圆的方程;
(2)过
,
作互相垂直的两直线分别与椭圆交于
,
,
,
四点,求四边形
面积的取值范围.
【答案】(1)
(2)![]()
【解析】
(1)由题意可知
,又
,所以
是
的中点,即可求出椭圆方程;
(2)当直线
与
之一与
轴垂直时,易知四边形
面积
;当直线
,
均与
轴不垂直时,设
:
,联立
,得
,利用韦达定理和弦长公式可得
,
,进而求得四边形
面积
关于
的解析式,再根据函数的单调性即可求出结果.
解:(1)由
得
,
点坐标为
;
,
是
的中点,
,![]()
椭圆方程为![]()
(2)当直线
与
之一与
轴垂直时,
![]()
四边形
面积
;
当直线
,
均与
轴不垂直时,不妨设
:
,
联立
代入消去
得![]()
设
,
,则
,![]()
.同理![]()
四边形
面积![]()
令
,则
,
,易知
是以
为变量的增函数
所以当
,
时,
,![]()
综上可知,
.
四边形
面积的取值范围为
.
【题目】自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查
城市和
城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了
名高中生家长进行了调查,得到下表:
关注 | 不关注 | 合计 | |
| 20 | 50 | |
| 20 | ||
合计 | 100 |
(1)完成上面的列联表;
(2)根据上面列联表的数据,是否有
的把握认为家长对自主招生关注与否与所处城市有关;
(3)为了进一步研究家长对自主招生的直法,该机构从关注的学生家长里面,按照分层抽样方法抽取了
人,并再从这
人里面抽取
人进行采访,求所抽取的
人恰好
两城市各一人的概率.
附:
(其中
).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】某工厂有两台不同机器
和
生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:
![]()
该产品的质量评价标准规定:鉴定成绩达到
的产品,质量等级为优秀;鉴定成绩达到
的产品,质量等级为良好;鉴定成绩达到
的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)完成下列
列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为
机器生产的产品比
机器生产的产品好;
|
| 合计 | |
良好以上(含良好) | |||
合格 | |||
合计 |
(2)根据所给数据,以事件发生的频率作为相应事件发生的概率,从两台不同机器
和
生产的产品中各随机抽取2件,求4件产品中
机器生产的优等品的数量多于
机器生产的优等品的数量的概率;
(3)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,
机器每生产10万件的成本为20万元,
机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?
附:独立性检验计算公式:
.
临界值表:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |