题目内容
已知I={不超过5的正整数},A={x|x2-5x+q=0},B={x|x2+px+12=0},且∁IA∪B={1,3,4,5},则p+q= .
考点:交、并、补集的混合运算
专题:集合
分析:根据集合的基本运算结合一元二次方程根与系数之间的关系进行求解即可.
解答:
解:全集U={1,2,3,4,5},A={x|x2-5x+q=0},B={x|x2+px+12=0},(∁UA)∪B={1,3,4,5},
∴2∈A,
将x=2代入x2-5x+q=0得:4-10+q=0,
即q=6,即x2-5x+6=0,
∴(x-2)(x-3)=0,即x=2或x=3,
∴A={2,3},则q=2×3=6,
∁UA={1,4,5},
∴3∈B,
将x=3代入x2+px+12=0得:9+3p+12=0,即p=-7,即x2-7x+12=0,
∴(x-3)(x-4)=0,即x=3或x=4,
∴B={3,4}.p=-(3+4)=-7,
则p+q=-7+6=-1,
故答案为:-1
∴2∈A,
将x=2代入x2-5x+q=0得:4-10+q=0,
即q=6,即x2-5x+6=0,
∴(x-2)(x-3)=0,即x=2或x=3,
∴A={2,3},则q=2×3=6,
∁UA={1,4,5},
∴3∈B,
将x=3代入x2+px+12=0得:9+3p+12=0,即p=-7,即x2-7x+12=0,
∴(x-3)(x-4)=0,即x=3或x=4,
∴B={3,4}.p=-(3+4)=-7,
则p+q=-7+6=-1,
故答案为:-1
点评:此题考查了交、并、补集的混合运算,利用根与系数之间的关系是解决本题的关键.
练习册系列答案
相关题目
已知i是虚数单位,则复数z=
的虚部是( )
| 1-i |
| i |
| A、1 | B、i | C、-1 | D、-i |
平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
若一个圆的圆心在直线y=2x上,在y轴上截得的弦的长度等于2,且与直线x-y+
=0相切,则这个圆的方程可能是( )
| 2 |
| A、x2+y2-x-2y=0 |
| B、x2+y2+2x+4y=0 |
| C、x2+y2-2=0 |
| D、x2+y2-1=0 |