题目内容

3.如图所示的空间几何体中,底面四边形ABCD为正方形,AF⊥AB,AF∥BE,平面ABEF⊥平面ABCD,DF=$\sqrt{5}$,CE=2$\sqrt{2}$,BC=2.
(Ⅰ)求二面角F-DE-C的大小;
(Ⅱ)若在平面DEF上存在点P,使得BP⊥平面DEF,试通过计算说明点P的位置.

分析 (Ⅰ)以A为原点,AD为x轴,AB为y轴,AF为z轴,建立空间直角坐标系,利用向量法能求出二面角F-DE-C的大小.
(Ⅱ)设$\overrightarrow{DP}$=$λ\overrightarrow{DE}+μ\overrightarrow{DF}$,推导出$\overrightarrow{BP}$=$\overrightarrow{BD}+\overrightarrow{DP}$=(2-2λ-2μ,2λ-2,2λ+μ),由线面垂直的性质能求出P是线段DE上靠近E的三等分点.

解答 解:(Ⅰ)∵底面四边形ABCD为正方形,AF⊥AB,AF∥BE,平面ABEF⊥平面ABCD,
∴AF⊥底面ABCD,
以A为原点,AD为x轴,AB为y轴,AF为z轴,建立空间直角坐标系,
∵DF=$\sqrt{5}$,CE=2$\sqrt{2}$,BC=2,
∴D(2,0,0),E(0,2,2),F(0,0,1),C(2,2,0),
$\overrightarrow{DE}$=(-2,2,2),$\overrightarrow{DF}$=(-2,0,1),$\overrightarrow{DC}$=(0,2,0),
设平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=-2x+2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=-2x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
设平面DEC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DE}=-2a+2b+2c=0}\\{\overrightarrow{m}•\overrightarrow{DC}=2b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,1),
设二面角F-DE-C的大小为θ,由图形知θ为钝角,
则cosθ=-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=-$\frac{3}{\sqrt{6}•\sqrt{2}}$=-$\frac{\sqrt{3}}{2}$,
∴θ=$\frac{5π}{6}$,
∴二面角F-DE-C的大小为$\frac{5π}{6}$.
(Ⅱ)设$\overrightarrow{DP}$=$λ\overrightarrow{DE}+μ\overrightarrow{DF}$,
∵$\overrightarrow{DE}=(-2,2,2)$,$\overrightarrow{DF}$=(-2,0,1),
又$\overrightarrow{BD}$=(2,-2,0),$\overrightarrow{DP}$=$λ\overrightarrow{DE}$+μ$\overrightarrow{DF}$=(-2λ,2λ,2λ)+(-2μ,-2μ,2λ,2λ+μ),
∴$\overrightarrow{BP}$=$\overrightarrow{BD}+\overrightarrow{DP}$=(2-2λ-2μ,2λ-2,2λ+μ),
∵$\left\{\begin{array}{l}{\overrightarrow{BP}•\overrightarrow{DP}=0}\\{\overrightarrow{BP}•\overrightarrow{DE}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-2(2-λ-2μ)+2λ+μ=0}\\{-2(2-2λ-2μ)+2(2λ-2)+2(2λ+μ)=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{μ=0}\\{λ=\frac{2}{3}}\end{array}\right.$,即$\overrightarrow{DP}$=$\frac{2}{3}\overrightarrow{DE}$.
∴P是线段DE上靠近E的三等分点.

点评 本题考查二面角的求法,考查满足条件的点的位置的确定,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网