题目内容

在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)+sin2
A
2
-cos2
A
2

(1)求函数f(x)的单调区间;
(2)若f(A)=0,a=2,求△ABC面积的最大值.
考点:正弦函数的单调性
专题:三角函数的图像与性质
分析:(1)由条件利用三角函数的恒等变换求得f(A)=
2
sin(A-
π
4
),可得f(x)=
2
sin(x-
π
4
),再利用正弦函数的单调性求得f(x)的单调区间.
(2)由f(A)=0,求得A=
π
4
,再由a=2利用余弦定理、基本不等式求得bc的最大值,可得△ABC面积的最大值.
解答: 解:(1)△ABC中,∵f(A)=2cos
A
2
sin(π-
A
2
)+sin2
A
2
-cos2
A
2
=2sin
A
2
cos
A
2
-cosA=sinA-cosA=
2
sin(A-
π
4
),
∴f(x)=
2
sin(x-
π
4
).
令 2kπ-
π
2
≤x-
π
4
≤2kπ+
π
2
,k∈z,求得 2kπ-
π
4
≤x≤2kπ+
4
,可得函数的增区间为[2kπ-
π
4
,2kπ+
4
],k∈z.
令 2kπ+
π
2
≤x-
π
4
≤2kπ+
2
,k∈z,求得 2kπ+
4
≤x≤2kπ+
4
,可得函数的增区间为[2kπ+
4
,2kπ+
4
],k∈z.
(2)∵f(A)=
2
sin(A-
π
4
)=0,0<A<π,∴A=
π
4

∵a=2,∴a2=4=b2+c2-2bc•cosA=b2+c2-
2
bc≥2bc-
2
bc∴bc≤4+2
2
,当且仅当b=c时取等号.
故△ABC的面积
1
2
bc•sinA的最大值为
1
2
(4+2
2
)•
2
2
=4+
2
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调性,余弦定理、基本不等式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网