题目内容

4.已知$tan({α+β})=2,tan({π-β})=\frac{3}{2}$.
(1)求tanα的值;
(2)求$\frac{{sin({\frac{π}{2}+α})-sin({π+α})}}{cosα+2sinα}$的值.

分析 (1)由题意可得tan(α+β)=2,tanβ=-$\frac{3}{2}$,代入tanα=tan[(α+β)-β]=$\frac{tan(α+β)-tanβ}{1+tan(α+β)tanβ}$,计算可得;
(2)由诱导公式和弦化切可得原式=$\frac{1+tanα}{1+2tanα}$,代值计算可得.

解答 解:(1)∵$tan({α+β})=2,tan({π-β})=\frac{3}{2}$,
∴tan(α+β)=2,tanβ=-$\frac{3}{2}$,
∴tanα=tan[(α+β)-β]
=$\frac{tan(α+β)-tanβ}{1+tan(α+β)tanβ}$=$\frac{2+\frac{3}{2}}{1+2×(-\frac{3}{2})}$=-$\frac{7}{4}$;
(2)化简可得$\frac{{sin({\frac{π}{2}+α})-sin({π+α})}}{cosα+2sinα}$
=$\frac{cosα+sinα}{cosα+2sinα}$=$\frac{1+tanα}{1+2tanα}$=$\frac{3}{10}$

点评 本题考查三角函数化简,涉及两角差的正切公式和同角三角函数基本关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网