题目内容
1.已知MP、OM、AT分别为θ(0<θ<$\frac{π}{2}$)的正弦弦、余弦线、正切线,若OM<MP<AT,则θ∈( )| A. | (0,$\frac{π}{4}$) | B. | (0,$\frac{π}{3}$) | C. | ($\frac{π}{4}$,$\frac{π}{2}$) | D. | ($\frac{π}{6}$,$\frac{π}{3}$) |
分析 画出三角函数线,结合图形判断即可得出答案.
解答
解:∵MP、OM、AT分别为θ(0<θ<$\frac{π}{2}$)的正弦弦、余弦线、正切线,若OM<MP<AT,
∴根据图形判断:θ∈($\frac{π}{4}$,$\frac{π}{2}$)
故选:C
点评 本题考查了三角函数线的运用,结合三角形判断,属于数形结合求解的题目.
练习册系列答案
相关题目
12.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x>1}\\{tan(\frac{π}{3}x),x≤1}\end{array}\right.$,则f($\frac{1}{f(2)}$)=( )
| A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
9.已知集合A={x∈N|x≤6},B={x∈R|x2-4x>0},则A∩B=( )
| A. | {4,5,6} | B. | {5,6} | C. | {x|4<x≤6} | D. | {x|x<0或4<x≤6} |
16.已知函数y=2sin(2x+φ)(|φ|<$\frac{π}{2}$)图象经过点(0,$\sqrt{3}$),则该函数图象的一条对称轴方程为( )
| A. | x=$\frac{π}{6}$ | B. | x=-$\frac{π}{12}$ | C. | x=$\frac{π}{12}$ | D. | x=-$\frac{π}{6}$ |
6.已知A、B、C是平面上不共线的三点,O是△ABC的重心,点P满足$\overrightarrow{OP}$=$\frac{1}{4}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$),则$\frac{{S}_{△PAB}}{{S}_{△OAB}}$为( )
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | $\frac{1}{2}$ |