题目内容
已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线,一抛物线的离心率,则a2+b2的取值范围是 .
考点:椭圆的简单性质,双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用抛物线的离心率为1,求出c=-1-a-b,分解函数的表达式为一个一次因式与一个二次因式的乘积,通过函数的零点即可推出a,b的关系利用线性规划求解a2+b2的取值范围即可.
解答:
解:设f(x)=x3+ax2+bx+c,由抛物线的离心率为1,可知f(1)=1+a+b+c=0,故c=-1-a-b,
所以f(x)=(x-1)[x2+(1+a)x+a+b+1]的另外两个根分别是一个椭圆一个双曲线的离心率,
故g(x)=x2+(1+a)x+a+b+1,有两个分别属于(0,1),(1,+∞)的零点,
故有g(0)>0,g(1)<0,即a+b+1>0且2a+b+3<0,
利用线性规划的知识,可确定a2+b2的取值范围是(5,+∞).
故选:D.
所以f(x)=(x-1)[x2+(1+a)x+a+b+1]的另外两个根分别是一个椭圆一个双曲线的离心率,
故g(x)=x2+(1+a)x+a+b+1,有两个分别属于(0,1),(1,+∞)的零点,
故有g(0)>0,g(1)<0,即a+b+1>0且2a+b+3<0,
利用线性规划的知识,可确定a2+b2的取值范围是(5,+∞).
故选:D.
点评:本题考查一元二次方程的根的分布与系数的关系,简单线性规划,考查计算能力.
练习册系列答案
相关题目
据统计,一名工人组装第x件某产品所用的时间(单位:分钟)f(x)=
(m,c为常数),已知工人组装第4件产品所用的时间为30分钟,工人组装第m件产品所用的时间为15分钟,则m=( )
|
| A、49 | B、25 | C、16 | D、9 |
已知函数y=
关于原点对称,则函数f(x)=
-1的对称中心的坐标为( )
| cosx |
| x |
2cos2(
| ||||
| x-1 |
| A、(-1,1) |
| B、(1,1) |
| C、(1,-1) |
| D、(-1,-1) |