ÌâÄ¿ÄÚÈÝ
3£®ÉèÊýÁÐ{an}µÄÊ×Ïîa1Ϊ³£Êý£¬ÇÒ${a_{n+1}}={3^n}-2{a_n}£¨n¡Ê{N_+}£©$£®£¨1£©Èô${a_1}¡Ù\frac{3}{5}$£¬Ö¤Ã÷£º$\left\{{{a_n}-\frac{3^n}{5}}\right\}$ÊǵȱÈÊýÁУ»
£¨2£©Èô${a_1}=\frac{3}{2}$£¬{an}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ð´³öÕâÈýÏÈô²»´æÔÚ˵Ã÷ÀíÓÉ£®
£¨3£©Èô{an}ÊǵÝÔöÊýÁУ¬Çóa1µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾ÝµÈ±ÈÊýÁе͍Ò壬½áºÏÌõ¼þ£¬¼´¿ÉµÃÖ¤£»
£¨2£©ÓÉ£¨1£©Çó³öÊýÁÐ{an}µÄͨÏʽ£¬ÔÙÓɵȲîÊýÁеÄÐÔÖÊ£¬µÃµ½·½³Ì£¬Çó³ön£¬¼´¿ÉÅжϣ»
£¨3£©ÔËÓÃÊýÁÐ{an}µÄͨÏʽ£¬×÷²î£¬ÔÙÓÉnΪżÊýºÍÆæÊý£¬Í¨¹ýÊýÁеĵ¥µ÷ÐÔ£¬¼´¿ÉµÃµ½·¶Î§
½â´ð £¨1£©Ö¤Ã÷£ºÒòΪ$\frac{{a}_{n+1}-\frac{1}{5}•{3}^{n+1}}{{a}_{n}-\frac{1}{5}•{3}^{n}}$=$\frac{{3}^{n}-2{a}_{n}-\frac{1}{5}•{3}^{n+1}}{{a}_{n}-\frac{1}{5}•{3}^{n}}$
=$\frac{\frac{2}{5}•{3}^{n}-2{a}_{n}}{-£¨\frac{1}{5}•{3}^{n}-{a}_{n}£©}$=-2£¬
ËùÒÔÊýÁÐ{an-$\frac{{3}^{n}}{5}$}ÊÇÊ×ÏîΪa1-$\frac{3}{5}$£¬¹«±ÈΪ-2µÄµÈ±ÈÊýÁУ»
£¨2£©½â£º{an-$\frac{{3}^{n}}{5}$}}Êǹ«±ÈΪ-2£¬Ê×ÏîΪa1-$\frac{3}{5}$=$\frac{9}{10}$µÄµÈ±ÈÊýÁУ®
ͨÏʽΪan=$\frac{{3}^{n}}{5}$+£¨a1-$\frac{3}{5}$£©£¨-2£©n-1=$\frac{{3}^{n}}{5}$+$\frac{9}{10}$•£¨-2£©n-1£¬
Èô{an}ÖдæÔÚÁ¬ÐøÈýÏî³ÉµÈ²îÊýÁУ¬Ôò±ØÓÐ2an+1=an+an+2£¬
¼´2[$\frac{{3}^{n+1}}{5}$+$\frac{9}{10}$•£¨-2£©n]=$\frac{{3}^{n}}{5}$+$\frac{9}{10}$•£¨-2£©n-1+$\frac{{3}^{n+2}}{5}$+$\frac{9}{10}$•£¨-2£©n+1£¬
½âµÃn=4£¬¼´a4£¬a5£¬a6³ÉµÈ²îÊýÁУ®
£¨3£©½â£ºÈç¹ûan+1£¾an³ÉÁ¢£¬
¼´$\frac{{3}^{n+1}}{5}$+£¨a1-$\frac{3}{5}$£©•£¨-2£©n£¾$\frac{{3}^{n}}{5}$+£¨a1-$\frac{3}{5}$£©•£¨-2£©n-1¶ÔÈÎÒâ×ÔÈ»Êý¾ù³ÉÁ¢£®
»¯¼òµÃ$\frac{4}{15}$•3n£¾-£¨a1-$\frac{3}{5}$£©•£¨-2£©n£¬
µ±nΪżÊýʱa1£¾$\frac{3}{5}$-$\frac{4}{15}$•£¨$\frac{3}{2}$£©n£¬
ÒòΪp£¨n£©=$\frac{3}{5}$-$\frac{4}{15}$•£¨$\frac{3}{2}$£©nÊǵݼõÊýÁУ¬
ËùÒÔp£¨n£©max=p£¨2£©=0£¬¼´a1£¾0£»
µ±nÎªÆæÊýʱ£¬a1£¼$\frac{3}{5}$+$\frac{4}{15}$•£¨$\frac{3}{2}$£©n£¬
ÒòΪq£¨n£©=$\frac{3}{5}$+$\frac{4}{15}$•£¨$\frac{3}{2}$£©nÊǵÝÔöÊýÁУ¬
ËùÒÔq£¨n£©min=q£¨1£©=1£¬¼´a1£¼1£»
¹Êa1µÄȡֵ·¶Î§Îª£¨0£¬1£©£®
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽ¼°µÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²éµÈ²îÊýÁеÄÐÔÖʺÍÒÑÖªÊýÁеĵ¥µ÷ÐÔ£¬Çó²ÎÊýµÄ·¶Î§£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
| A£® | lna£¾lnb | B£® | $\frac{1}{a}£¼\frac{1}{b}$ | C£® | a2£¾ab | D£® | a2+b2£¾2ab |
| A£® | -$\frac{\sqrt{6}}{2}$ | B£® | $\frac{\sqrt{6}}{2}$ | C£® | ¡À$\frac{\sqrt{6}}{2}$ | D£® | $\frac{3}{2}$ |