ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬×óÓÒ¶¥µã·Ö±ðΪA1£¬A2£¬¹ýF1×÷бÂʲ»Îª0µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8£®ÍÖÔ²ÉÏÒ»µãPÓëA1£¬A2Á¬ÏßµÄбÂÊÖ®»ý${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$£¨µãP²»ÊÇ×óÓÒ¶¥µãA1£¬A2£©£®£¨¢ñ£©Çó¸ÃÍÖÔ²·½³Ì£»
£¨¢ò£©ÒÑÖª¶¨µãM£¨0£¬m£©£¨ÆäÖг£Êým£¾0£©£¬ÇóÍÖÔ²É϶¯µãNÓëMµã¾àÀëµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÓÉ¡÷ABF2µÄÖܳ¤Îª8ÇóµÃa£¬È»ºó½áºÏ${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$ÇóµÃbµãµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Éè³öNµÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽµÃµ½|MN|¹ØÓÚNµÄ×Ý×ø±êµÄº¯Êý£¬È»ºó·ÖÀàÇó³öÍÖÔ²É϶¯µãNÓëMµã¾àÀëµÄ×î´óÖµ£®
½â´ð
½â£º£¨¢ñ£©Èçͼ£¬ÓÉ¡÷ABF2µÄÖܳ¤Îª8£¬µÃ4a=8£¬¼´a=2£®
¡àA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬
ÉèP£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$£®
ÓÖ${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$£¬µÃ$\frac{{y}_{0}}{{x}_{0}+2}•\frac{{y}_{0}}{{x}_{0}-2}=-\frac{1}{4}$£¬
¼´$\frac{{{x}_{0}}^{2}}{4}+{{y}_{0}}^{2}=1$£¬¡àb2=1£®
ÔòÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+{y^2}=1$£»
£¨¢ò£©ÉèÍÖÔ²ÉÏN£¨x0£¬y0£©£¨-1¡Üy0¡Ü1£©£¬ÓÖM£¨0£¬m£©£¬
¡à|MN|=$\sqrt{{{x}_{0}}^{2}+£¨{y}_{0}-m£©^{2}}$=$\sqrt{-3{{y}_{0}}^{2}-2m{y}_{0}+{m}^{2}+4}$
=$\sqrt{-3£¨{y}_{0}+\frac{m}{3}£©^{2}+\frac{4{m}^{2}}{3}+4}$£®
Èô$\frac{m}{3}£¾1$£¬¼´m£¾3ʱ£¬Ôòµ±y0=-1ʱ£¬|MN|ÓÐ×î´óֵΪm+1£¬
Èô0$£¼\frac{m}{3}¡Ü1$£¬¼´0£¼m¡Ü3ʱ£¬Ôòµ±${y}_{0}=-\frac{m}{3}$ʱ£¬|MN|ÓÐ×î´óֵΪ$\sqrt{\frac{4{m}^{2}}{3}+4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÍÖÔ²·½³ÌµÄÇ󷨣¬ÑµÁ·ÁËÀûÓÃÅä·½·¨Çóº¯ÊýµÄ×îÖµ£¬ÊÇÖеµÌ⣮
| A£® | 7 | B£® | $\sqrt{7}$ | C£® | 3 | D£® | $\sqrt{3}$ |
| A£® | 5 | B£® | $\sqrt{13}$ | C£® | 1 | D£® | $-\sqrt{13}$ |
| A£® | $y=\sqrt{x}$ | B£® | y=2|x| | C£® | y=x2+x+1 | D£® | y=2-x |