题目内容

7.已知集合A={x|log2(x-1)<1},$B=\left\{{x|\frac{x+1}{x-3}<0}\right\}$,则“x∈A”是“x∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用对数函数的单调性化简集合A,利用不等式的解法可得B,再利用简易逻辑的判定方法即可得出.

解答 解:由log2(x-1)<1,可得0<x-1<2,解得1<x<3.
∴A=(1,3).
由$\frac{x+1}{x-3}$<0,?(x+1)(x-3)<0,解得-1<x<3.∴B=(-1,3).
则“x∈A”是“x∈B”的充分不必要条件.
故选:A.

点评 本题考查了对数函数的单调性、不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网