题目内容

17.如图,圆锥的横截面为等边三角形SAB,O为底面圆圆心,Q为底面圆周上一点.
(Ⅰ)如果BQ的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,求该圆锥的体积.

分析 (Ⅰ)连接OC,AQ,由已知可得OC∥AQ,再由AB为圆的直径,可得OC⊥BQ,由SO⊥平面ABQ,得SO⊥BQ,由线面垂直的判定可得BQ⊥平面SOC,进一步得到平面SBQ⊥平面SOC,由面面垂直的性质可OH⊥平面SBQ;
(Ⅱ)由已知求解三角形可得OQ=OA=2,SA=4,则SO=$\sqrt{{4}^{2}-{2}^{2}}=2\sqrt{3}$.由已知体积公式求得圆锥的体积.

解答 (Ⅰ)证明:连接OC,AQ,
∵O为AB的中点,且BQ的中点为C,
∴OC∥AQ,
∵AB为圆的直径,∠AQB=90°,∴OC⊥BQ,
∵SO⊥平面ABQ,∴SO⊥BQ,
又SO∩OC=O,∴BQ⊥平面SOC,
则平面SBQ⊥平面SOC,
又平面SBQ∩平面SOC=SC,OH⊥SC,
∴OH⊥平面SBQ;
(Ⅱ)解:∵∠AOQ=60°,QB=2$\sqrt{3}$,∴OC=1,OQ=OA=2,SA=4,
则SO=$\sqrt{{4}^{2}-{2}^{2}}=2\sqrt{3}$.
∴圆锥的体积V=$\frac{1}{3}π{r}^{2}•h=\frac{1}{3}π×{2}^{2}×2\sqrt{3}=\frac{8\sqrt{3}}{3}π$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了圆锥体积的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网