题目内容
已知数列{an}满足a1=1,an+1=
(n∈N*).
(Ⅰ)证明:数列{
+
}是等比数列;
(Ⅱ)令bn=
,数列{bn}的前n项和为Sn.
①证明:bn+1+bn+2+…+b2n<
②证明:当n≥2时,Sn2>2(
+
+…+
)
| (3n+3)an+4n+6 |
| n |
(Ⅰ)证明:数列{
| an |
| n |
| 2 |
| n |
(Ⅱ)令bn=
| 3n-1 |
| an+2 |
①证明:bn+1+bn+2+…+b2n<
| 4 |
| 5 |
②证明:当n≥2时,Sn2>2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
考点:数列的求和,等比关系的确定,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
=3×
+
,由此能推导出数列{
+
}是等比数列是以1为首项,3为公比的等比数列.
(Ⅱ)(ⅰ)由
+
=3n-1,得an=n•3n-1-2,从而bn=
,原不等式即为:
+
+…+
<
,先用数学归纳法证明不等式当n≥2时,
+
+…+
<
-
,由此能证明bn+1+bn+2+…+b2n<
.
(ⅱ)由Sn=1+
+
+…+
,得当n≥2,Sn2-Sn-12=2•
-
,从而利用累加法得Sn2-1=2(
+
+…+
)-(
+
+…+
),进而得到Sn2>2(
+
+…+
)+
>2(
+
+…+
),由此能证明当n≥2时,Sn2>2(
+
+…+
).
| an+1 |
| n+1 |
| an |
| n |
| 4n+6 |
| n(n+1) |
| an |
| n |
| 2 |
| n |
(Ⅱ)(ⅰ)由
| an |
| n |
| 2 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 4 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 4 |
| 5 |
| 1 |
| 2n+1 |
| 4 |
| 5 |
(ⅱ)由Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| Sn |
| n |
| 1 |
| n2 |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
解答:
(Ⅰ)证明:∵数列{an}满足a1=1,an+1=
(n∈N*),
∴nan=3(n+1)an+4n+6,
两边同除n(n+1)得,
=3×
+
,
即
=3×
+
-
,
也即
+
=3×(
+
),
又a1=-1,∴
+
=1≠0,
∴数列{
+
}是等比数列是以1为首项,3为公比的等比数列.
(Ⅱ)(ⅰ)证明:由(Ⅰ)得,
+
=3n-1,∴an=n•3n-1-2,
∴bn=
,
原不等式即为:
+
+…+
<
,
先用数学归纳法证明不等式:
当n≥2时,
+
+…+
<
-
,
证明过程如下:
当n=2时,左边=
+
=
=
<
=
-
,不等式成立
假设n=k时,不等式成立,即
+
+…+
<
-
,
则n=k+1时,左边=
+
+…+
+
+
<
-
-
-
+
+
=
-
<
-
,
∴当n=k+1时,不等式也成立.
因此,当n≥2时,
+
+…+
<
-
,
当n≥2时,
-
<
,
∴当n≥2时,
+
+…+
<
,
又当n=1时,左边=
<
,不等式成立
故bn+1+bn+2+…+b2n<
.
(ⅱ)证明:由(i)得,Sn=1+
+
+…+
,
当n≥2,Sn2-Sn-12=(1+
+…+
+
)2-(1+
+…+
)2
=
(2Sn-
)
=2•
-
,
Sn-12-Sn-22=2•
-
,
…
S22-S12=2•
-
,
将上面式子累加得,Sn2-1=2(
+
+…+
)-(
+
+…+
),
又
+
+…+
<
+
+…+
=1-
+
-
+…+
-
=1-
,
∴Sn2-1>2(
+
+…+
)-(1-
),
即Sn2>2(
+
+…+
)+
>2(
+
+…+
),
∴当n≥2时,Sn2>2(
+
+…+
).
| (3n+3)an+4n+6 |
| n |
∴nan=3(n+1)an+4n+6,
两边同除n(n+1)得,
| an+1 |
| n+1 |
| an |
| n |
| 4n+6 |
| n(n+1) |
即
| an+1 |
| n+1 |
| an |
| n |
| 6 |
| n |
| 2 |
| n+1 |
也即
| an+1 |
| n+1 |
| 2 |
| n+1 |
| an |
| n |
| 2 |
| n |
又a1=-1,∴
| a1 |
| 1 |
| 2 |
| 1 |
∴数列{
| an |
| n |
| 2 |
| n |
(Ⅱ)(ⅰ)证明:由(Ⅰ)得,
| an |
| n |
| 2 |
| n |
∴bn=
| 1 |
| n |
原不等式即为:
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 4 |
| 5 |
先用数学归纳法证明不等式:
当n≥2时,
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 4 |
| 5 |
| 1 |
| 2n+1 |
证明过程如下:
当n=2时,左边=
| 1 |
| 3 |
| 1 |
| 4 |
| 7 |
| 12 |
| 35 |
| 60 |
| 36 |
| 60 |
| 4 |
| 5 |
| 1 |
| 2×2+1 |
假设n=k时,不等式成立,即
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 4 |
| 5 |
| 1 |
| 2k+1 |
则n=k+1时,左边=
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
<
| 4 |
| 5 |
| 1 |
| 2k+1 |
| 1 |
| 2k+1 |
| 1 |
| k+1 |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
=
| 4 |
| 5 |
| 1 |
| 2k+2 |
| 4 |
| 5 |
| 1 |
| 2(k+1)+1 |
∴当n=k+1时,不等式也成立.
因此,当n≥2时,
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 4 |
| 5 |
| 1 |
| 2n+1 |
当n≥2时,
| 4 |
| 5 |
| 1 |
| 2n+1 |
| 4 |
| 5 |
∴当n≥2时,
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 4 |
| 5 |
又当n=1时,左边=
| 1 |
| 2 |
| 4 |
| 5 |
故bn+1+bn+2+…+b2n<
| 4 |
| 5 |
(ⅱ)证明:由(i)得,Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
当n≥2,Sn2-Sn-12=(1+
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n-1 |
=
| 1 |
| n |
| 1 |
| n |
=2•
| Sn |
| n |
| 1 |
| n2 |
Sn-12-Sn-22=2•
| Sn-1 |
| n-1 |
| 1 |
| (n-1)2 |
…
S22-S12=2•
| S2 |
| 2 |
| 1 |
| 22 |
将上面式子累加得,Sn2-1=2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
又
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)×n |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=1-
| 1 |
| n |
∴Sn2-1>2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| n |
即Sn2>2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
∴当n≥2时,Sn2>2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
点评:本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.
练习册系列答案
相关题目
| A、16π | B、9π | C、8π | D、4π |
已知函数f(x)=
若数列{an}满足an=f(n)(n∈N+),且{an}是递增数列,则实数a的取值范围是( )
|
A、[
| ||
B、(
| ||
| C、(2,3) | ||
| D、(1,3) |