题目内容

已知数列{an}满足a1=1,an+1=
(3n+3)an+4n+6
n
(n∈N*).
(Ⅰ)证明:数列{
an
n
+
2
n
}是等比数列;
(Ⅱ)令bn=
3n-1
an+2
,数列{bn}的前n项和为Sn
①证明:bn+1+bn+2+…+b2n
4
5

②证明:当n≥2时,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
考点:数列的求和,等比关系的确定,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
an+1
n+1
=3×
an
n
+
4n+6
n(n+1)
,由此能推导出数列{
an
n
+
2
n
}是等比数列是以1为首项,3为公比的等比数列.
(Ⅱ)(ⅰ)由
an
n
+
2
n
=3n-1,得an=n•3n-1-2,从而bn=
1
n
,原不等式即为:
1
n+1
+
1
n+2
+…+
1
2n
4
5
,先用数学归纳法证明不等式当n≥2时,
1
n+1
+
1
n+2
+…+
1
2n
4
5
-
1
2n+1
,由此能证明bn+1+bn+2+…+b2n
4
5

(ⅱ)由Sn=1+
1
2
+
1
3
+…+
1
n
,得当n≥2,Sn2-Sn-12=2
Sn
n
-
1
n2
,从而利用累加法得Sn2-1=2(
S2
2
+
S3
3
+…+
Sn
n
)
-(
1
22
+
1
32
+…+
1
n2
)
,进而得到Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)+
1
n
>2(
S2
2
+
S3
3
+…+
Sn
n
),由此能证明当n≥2时,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
).
解答: (Ⅰ)证明:∵数列{an}满足a1=1,an+1=
(3n+3)an+4n+6
n
(n∈N*),
∴nan=3(n+1)an+4n+6,
两边同除n(n+1)得,
an+1
n+1
=3×
an
n
+
4n+6
n(n+1)

an+1
n+1
=3×
an
n
+
6
n
-
2
n+1

也即
an+1
n+1
+
2
n+1
=3×(
an
n
+
2
n
)

又a1=-1,∴
a1
1
+
2
1
=1≠0

∴数列{
an
n
+
2
n
}是等比数列是以1为首项,3为公比的等比数列.

(Ⅱ)(ⅰ)证明:由(Ⅰ)得,
an
n
+
2
n
=3n-1,∴an=n•3n-1-2
bn=
1
n

原不等式即为:
1
n+1
+
1
n+2
+…+
1
2n
4
5

先用数学归纳法证明不等式:
当n≥2时,
1
n+1
+
1
n+2
+…+
1
2n
4
5
-
1
2n+1

证明过程如下:
当n=2时,左边=
1
3
+
1
4
=
7
12
=
35
60
36
60
=
4
5
-
1
2×2+1
,不等式成立
假设n=k时,不等式成立,即
1
k+1
+
1
k+2
+…+
1
2k
4
5
-
1
2k+1

则n=k+1时,左边=
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2k+2

4
5
-
1
2k+1
-
1
2k+1
-
1
k+1
+
1
2k+1
+
1
2k+2

=
4
5
-
1
2k+2
4
5
-
1
2(k+1)+1

∴当n=k+1时,不等式也成立.
因此,当n≥2时,
1
n+1
+
1
n+2
+…+
1
2n
4
5
-
1
2n+1

当n≥2时,
4
5
-
1
2n+1
4
5

∴当n≥2时,
1
n+1
+
1
n+2
+…+
1
2n
4
5

又当n=1时,左边=
1
2
4
5
,不等式成立
故bn+1+bn+2+…+b2n
4
5

(ⅱ)证明:由(i)得,Sn=1+
1
2
+
1
3
+…+
1
n

当n≥2,Sn2-Sn-12=(1+
1
2
+…+
1
n-1
+
1
n
2-(1+
1
2
+…+
1
n-1
2
=
1
n
(2Sn-
1
n
)

=2
Sn
n
-
1
n2

Sn-12-Sn-22=2•
Sn-1
n-1
-
1
(n-1)2


S22-S12=2•
S2
2
-
1
22

将上面式子累加得,Sn2-1=2(
S2
2
+
S3
3
+…+
Sn
n
)
-(
1
22
+
1
32
+…+
1
n2
)

1
22
+
1
32
+…+
1
n2
1
1×2
+
1
2×3
+…+
1
(n-1)×n

=1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n

=1-
1
n

Sn2-1>2(
S2
2
+
S3
3
+…+
Sn
n
)-(1-
1
n
)

Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)+
1
n
>2(
S2
2
+
S3
3
+…+
Sn
n
),
∴当n≥2时,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
).
点评:本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网