题目内容


如图所示,在△DEM中,=(0,-8),Ny轴上,且Ex轴上移动.

(1)求点M的轨迹方程;

(2)过点F(0,1)作互相垂直的两条直线l1l2l1与点M的轨迹交于点ABl2与点M的轨迹交于点CQ,求的最小值.

 


 (1)设M(xy),E(a,0),由条件知D(0,-8),

Ny轴上且NEM的中点,∴x=-a

=(-a,-8)·(xay)=-a(xa)-8y=2x2-8y=0,∴x2=4y(x≠0),

∴点M的轨迹方程为x2=4y(x≠0).

(2)设A(x1y1),B(x2y2),C(x3y3),Q(x4y4),直线l1ykx+1(k≠0),则直线l2y=-x+1,

消去y得,x2-4kx-4=0,

x1x2=4kx1x2=-4,

消去y得,x2x-4=0,

x3x4=-x3x4=-4.

AB在直线l1上,∴y1kx1+1,y2kx2+1,

CQ在直线l2上,∴y3=-x3+1,y4=-x4+1.

=(x3x1y3y1)·(x2x4y2y4)

=(x3x1)(x2x4)+(y3y1)·(y2y4)

=(x3x1)(x2x4)+(-x3kx1)(kx2x4)

x3x2x1x2x3x4x1x4x2x3k2x1x2x3x4x1x4

=(-1-k2)x1x2+(-1-)x3x4=4(1+k2)+4(1+)=8+4(k2)≥16等号在k2时取得,

k=±1时成立.∴的最小值为16.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网