ÌâÄ¿ÄÚÈÝ
2£®Ä³µ¥Î»¶Ô360λӦƸÕß½øÐÐÁË2¸ö¿ÆÄ¿µÄ²âÊÔ£¬Ã¿¸ö¿ÆÄ¿µÄ³É¼¨Óɸߵ½µÍÒÀ´ÎΪÓÅÐã¡¢Á¼ºÃºÍÒ»°ã£¬´ÓËùÓÐӦƸÕߵijɼ¨ÖÐËæ»ú³éÈ¡27¸öÊý¾Ýͳ¼ÆÈçÏ£º| ÓÅÐã | Á¼ºÃ | Ò»°ã | |
| ÓÅÐã | b | 2 | 3 |
| Á¼ºÃ | 3 | 4 | a |
| Ò»°ã | 3 | 3 | 3 |
£¨¢ñ£©¹À¼ÆÁ½¿Æ³É¼¨ÏàͬµÄӦƸÕßµÄÈËÊý£»
£¨¢ò£©´ÓËùÓпÆÄ¿Ò»³É¼¨ÎªÁ¼ºÃµÄӦƸÕßÖÐËæ»ú³éÈ¡3ÈË£¬ÉèÕâ3È˳ɼ¨ÖÐÓÅÐã¿ÆÄ¿×ÜÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÆäÊýѧÆÚÍûE¦Î£»
£¨¢ó£©¸ù¾ÝÁ½¿Æ²âÊԳɼ¨£¬Ã¿Î»Ó¦Æ¸Õß¿ÉÄÜÊôÓÚ9¸ö²»Í¬µÄ³É¼¨×éÖ®Ò»£¬Éè±íÖÐÁ½¿Æ³É¼¨²»Í¬µÄ¸÷×éÈËÊýµÄ·½²îΪs12£¬¿ÆÄ¿Ò»³É¼¨²»¸ßÓÚ¿ÆÄ¿¶þ³É¼¨µÄ¸÷×éÈËÊýµÄ·½²îΪs22£¬±È½Ïs12Óës22µÄ´óС£®£¨Ö»Ð´½áÂÛ¼´¿É£©
·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒ⣬Çó³öa¡¢bµÄÖµ£¬ÔÙ¼ÆËãÁ½¿Æ³É¼¨ÏàͬµÄӦƸÕßÈËÊý£»
£¨¢ò£©¼ÆËãËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûE¦Î¼´¿É£»
£¨¢ó£©¸ù¾Ý±íÖÐÁ½¿Æ³É¼¨²»Í¬µÄ¸÷×éÈËÊýÓë¿ÆÄ¿Ò»³É¼¨²»¸ßÓÚ¿ÆÄ¿¶þ³É¼¨µÄ¸÷×éÈËÊý£¬½áºÏ·½²îµÄ¶¨ÒåµÃ³ös12Óës22µÄ´óС£®
½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬a+b=27-£¨5+7+9£©=6£¬
27ÈËÖÐÓÐ27¡Á$\frac{80}{360}$=6ÈË¿ÆÄ¿Ò»µÄ³É¼¨¸ßÓÚ¿ÆÄ¿¶þµÄ³É¼¨£»
¼´2+a=6£¬½âµÃa=4£¬ËùÒÔb=2£»
ËùÒÔ¹À¼ÆÁ½¿Æ³É¼¨ÏàͬµÄӦƸÕßÈËÊýΪ2+4+3=9£»
£¨¢ò£©ËùÓпÆÄ¿Ò»³É¼¨ÎªÁ¼ºÃµÄӦƸÕßÓÐ3+4+4=11ÈË£¬
´ÓÖÐËæ»ú³éÈ¡3ÈË£¬ÉèÕâ3È˳ɼ¨ÖÐÓÅÐã¿ÆÄ¿×ÜÊýΪ¦Î£¬Ôò¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£»
ÇÒP£¨¦Î=0£©=$\frac{{C}_{8}^{3}}{{C}_{11}^{3}}$=$\frac{56}{165}$£¬P£¨¦Î=1£©=$\frac{{C}_{3}^{1}{•C}_{8}^{2}}{{C}_{11}^{3}}$=$\frac{28}{55}$£¬P£¨¦Î=2£©=$\frac{{C}_{3}^{2}{•C}_{8}^{1}}{{C}_{11}^{3}}$=$\frac{8}{55}$£¬P£¨¦Î=3£©=$\frac{{C}_{3}^{3}}{{C}_{11}^{3}}$=$\frac{1}{165}$£»
ËùÒÔËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐΪ£¬
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{56}{165}$ | $\frac{28}{55}$ | $\frac{8}{55}$ | $\frac{1}{165}$ |
£¨¢ó£©¸ù¾ÝÁ½¿Æ²âÊԳɼ¨£¬±íÖÐÁ½¿Æ³É¼¨²»Í¬µÄ¸÷×éÈËÊýΪ2£¬3£¬3£¬4£¬3£¬3£¬Æä·½²îΪs12£¬
¿ÆÄ¿Ò»³É¼¨²»¸ßÓÚ¿ÆÄ¿¶þ³É¼¨µÄ¸÷×éÈËÊýΪ3£¬3£¬Æä·½²îΪs22£¬Ôòs12£¾s22£®
µãÆÀ ±¾Ì⿼²éÁËËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬Ҳ¿¼²éÁË·½²îµÄ¶¨ÒåÓëÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| A£® | 3$\sqrt{13}$ | B£® | 3$\sqrt{15}$ | C£® | 3$\sqrt{21}$ | D£® | 15 |
| A£® | $\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$ | B£® | $\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{BC}$ | C£® | $\overrightarrow{AC}$+$\overrightarrow{BA}$=$\overrightarrow{AD}$ | D£® | $\overrightarrow{AC}$+$\overrightarrow{AD}$=$\overrightarrow{DC}$ |