题目内容
17.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y-6≤0}\\{2x+y-3≥0}\end{array}\right.$,则3x+y的最大值是8.分析 先画出满足条件的平面区域,求出A点的坐标,由z=3x+y得:y=-3x+z,显然直线过A(2,2)时z最大,代入求出即可.
解答 解:画出满足推荐的平面区域,如图示:
,
由$\left\{\begin{array}{l}{y=x}\\{x+2y-6=0}\end{array}\right.$,解得:A(2,2)
由z=3x+y得:y=-3x+z,
显然直线过A(2,2)时z最大,
z的最大值是:8.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
练习册系列答案
相关题目
7.某班为了调查同学们周末的运动时间,随机对该班级50名同学进行了不记名的问卷调查,得到了如下表所示的统计结果:
(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关?
(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 运动时间不超过2小时 | 运动时间超过2小时 | 合计 | |
| 男生 | 10 | 20 | 30 |
| 女生 | 13 | 7 | 20 |
| 合计 | 23 | 27 | 50 |
(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
8.若$\sqrt{3}$sinx-cosx=4-m,则实数m的取值范围是( )
| A. | 2≤m≤6 | B. | -6≤m≤6 | C. | 2<m<6 | D. | 2≤m≤4 |
2.为了调整个人所得税征收制度,某机构准备调查了解某市市民的收人情况,随机抽取了n名市民进行试点凋查,其月收人介于1200元和4200元之间,将调查结果按如下方式分为五组:第一组[1200,1800):第二组[1800,2400)…:第五组[3600,4200].下表是按上述分组方式得到的频率分布表:
(I)求n及上表中的x,y,z,a,b的值;
(Ⅱ)为了了解市民对个人所得税征收制度的意见,现利用分层抽样的方法从这n名市民中抽取一个容量为50的样本进行问卷凋查,若从第一组或第五组中抽取的市民中任选两名,求事件“两人收入之差大于1000元”的概率.
| 分组 | 频数 | 频率 |
| [1200,1800) | x | A |
| [1800,2400) | 90 | B |
| [2400,3000) | y | 0.40 |
| [3000,3600) | 160 | 0.32 |
| [3600,4200] | z | 0.04 |
(Ⅱ)为了了解市民对个人所得税征收制度的意见,现利用分层抽样的方法从这n名市民中抽取一个容量为50的样本进行问卷凋查,若从第一组或第五组中抽取的市民中任选两名,求事件“两人收入之差大于1000元”的概率.
9.函数f(x)=loga(x3-2ax)(a>0且a≠1)在(4,+∞)上单调递增,则a的取值范围是( )
| A. | 1<a≤4 | B. | 1<a≤8 | C. | 1<a≤12 | D. | 1<a≤24 |
6.已知p:0<a<4,q:函数y=x2-ax+a的值恒为正,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |