题目内容
【题目】下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
【答案】D
【解析】解:在A中,如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体, 各面都是三角形,但它不是棱锥.故A错误;
在B中,一平面截一棱锥,只有当平面与底面平行时,才能得到一个棱锥和一个棱台,故B错误;
在C中,若六棱锥的所有棱长都相等,则底面多边形是正六边形.
由过中心和定点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C错误;
在D中,根据圆锥母线的定义知圆锥的顶点与底面圆周上的任意一点的连线都是母线,故D正确.
故选:D.![]()
通过简单几何体和直观图说明A和B错误,根据正六棱锥的过中心和定点的截面知C错误,由圆锥的母线进行判断知D正确.
练习册系列答案
相关题目