题目内容

如图,四边形么BDC内接于圆,BD=CD,过C点的圆的切线与AB的延长线交于E点.
(I)求证:∠EAC=2∠DCE;
(Ⅱ)若BD⊥AB,BC=BE,AE=2,求AB的长.
考点:与圆有关的比例线段,弦切角
专题:推理和证明
分析:(Ⅰ)由等腰三角形性质得∠BCD=∠CBD,由弦切角定理得∠ECD=∠CBD,从而∠BCE=2∠ECD,由此能证明∠EAC=2∠ECD.
(Ⅱ)由已知得AC⊥CD,AC=AB,由BC=BE,得AC=EC.由切割线定理得EC2=AE•BE,由此能求出AB的长.
解答: (Ⅰ)证明:因为BD=CD,所以∠BCD=∠CBD.
因为CE是圆的切线,所以∠ECD=∠CBD.
所以∠ECD=∠BCD,所以∠BCE=2∠ECD.
因为∠EAC=∠BCE,所以∠EAC=2∠ECD.…(5分)
(Ⅱ)解:因为BD⊥AB,所以AC⊥CD,AC=AB.
因为BC=BE,所以∠BEC=∠BCE=∠EAC,所以AC=EC.
由切割线定理得EC2=AE•BE,即AB2=AE•( AE-AB),即
AB2+2 AB-4=0,解得AB=
5
-1.…(10分)
点评:本题考查一个角是另一个角的二倍的证明,考查线段长的求法,是中档题,解题时要认真审题,注意弦切角定理、切割线定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网