题目内容

如图,在三棱柱ABC-A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=
2

(1)求证:平面A1BC⊥平面ACC1A1
(2)若D为AB中点,求证:BC1∥平面A1CD;
(3)若D为AB得三等分点,且
AD
DB
=2,求平面A1CD将三棱柱分成左,右两部分体积的比.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)利用等边三角形的判定、勾股定理的逆定理、及线面、面面垂直的判定定理和性质定理即可证明;
(2)利用平行四边形的性质、三角形的中位线定理、线面平行的判定定理即可证明;
(3)V=
1
3
•2S•h=
2
3
Sh,V=3Sh,V=3Sh-
2
3
Sh=
7
3
Sh,即可求出平面A1CD将三棱柱分成左,右两部分体积的比.
解答: (1)证明:在△A1AC中,∠A1AC=60°,AA1=AC=1,
∴A1C=1,
在△A1BC中,BC=1,A1C=1,A1B=
2

∴∠A1BC=90°,∴BC⊥A1C,
又AA1⊥BC,AA1∩A1C=A1
∴BC⊥平面ACC1A1
∵BC?平面A1BC,
∴平面A1BC⊥平面ACC1A1
(2)证明:连接A1C交AC1于O,连接DO
则由D为AB中点,O为AC1中点得,OD∥BC1
∵OD?平面A1DC,BC1?平面A1DC,
∴BC1∥平面A1DC;
(3)解:记S△CBD=S,则S△CAD=2S,S△CAB=2S,棱柱的高为h,则
V=
1
3
•2S•h=
2
3
Sh,V=3Sh,V=3Sh-
2
3
Sh=
7
3
Sh,
∴平面A1CD将三棱柱分成左,右两部分体积的比为2:7.
点评:熟练掌握等边三角形的判定、勾股定理的逆定理、及线面、面面垂直与平行的判定定理和性质定理、平行四边形的性质、三角形的中位线定理是证明问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网