题目内容

2.已知a、b∈R+,则下列各数a、b、$\sqrt{ab}$、$\frac{a+b}{2}$、$\frac{2ab}{a+b}$、$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$从小到大的顺序是a≤$\frac{2ab}{a+b}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≤b.
(a≤b).

分析 利用基本不等式的性质、不等式的性质即可得出.

解答 解:不妨设0<a≤b,
∴a2≤ab,∴a2+ab≤2ab,∴a≤$\frac{2ab}{a+b}$.
∵$\frac{a+b}{2}$≥$\sqrt{ab}$,
∴$\frac{2\sqrt{ab}}{a+b}$≤1,∴$\frac{2ab}{a+b}$≤$\sqrt{ab}$.
∵2(a2+b2)≥(a+b)2
∴$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$.
∵0<a≤b,
∴a2≤b2
∴a2+b2≤2b2
∴$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≤b.
综上可得:a≤$\frac{2ab}{a+b}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≤b.
故答案为:a≤$\frac{2ab}{a+b}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≤b.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网