题目内容
设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若x0是方程f(x)-f′(x)=2的一个解,则x0可能存在的区间是( )
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |
考点:导数的运算,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:根据条件设f(x)-log2x=t,然后求出t的值,进而求出函数f(x)的表达式,根据函数零点的判定条件即可得到结论.
解答:
解:设f(x)-log2x=t,则f(x)=log2x+t,且f(t)=3,
当x=t时,f(t)=log2t+t=3,解得t=2,
∴f(x)=log2x+2,f′(x)=
,
则由f(x)-f′(x)=2得log2x+2-
=2,
即log2x-
=0,
设g(x)=log2x-
,则g(1)=-
<0,g(2)=1-
>0,
∴根据根的存在性定理可知在(1,2)内g(x)存在零点,
即x0∈(1,2),
故选:B.
当x=t时,f(t)=log2t+t=3,解得t=2,
∴f(x)=log2x+2,f′(x)=
| 1 |
| xln2 |
则由f(x)-f′(x)=2得log2x+2-
| 1 |
| xln2 |
即log2x-
| 1 |
| xln2 |
设g(x)=log2x-
| 1 |
| xln2 |
| 1 |
| ln2 |
| 1 |
| 2ln2 |
∴根据根的存在性定理可知在(1,2)内g(x)存在零点,
即x0∈(1,2),
故选:B.
点评:本题主要考查函数零点区间的判断,根据函数的性质求出函数f(x)的表达式是解决本题的关键,综合性较强.
练习册系列答案
相关题目
设直线l1:2x-my-1=0,l2:(m-1)x-y+1=0.则“m=2”是“l1∥l2”的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
下列函数中既是奇函数,又在区间[-1,1]上单调递减的函数是( )
| A、f(x)=|tan2x| | ||||||
| B、f(x)=-|x+1| | ||||||
C、f(x)=
| ||||||
D、f(x)=log
|
设F1,F2为椭圆C1:
+
=1(a>b>0与双曲线C2的公共点左右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2.若椭圆C1的离心率e∈[
,
],则双曲线C2的离心率取值范围是( )
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 8 |
| 4 |
| 9 |
A、[
| ||||
B、[
| ||||
| C、(1,4] | ||||
D、[
|
| π |
| 2 |
A、向右平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向左平移
|
在区间[0,1]上任取三个数x,y,z,若向量
=(x,y,z),则事件|
|≥1发生的概率是( )
| m |
| m |
A、
| ||
B、1-
| ||
C、1-
| ||
D、
|