题目内容
16.定义为n个正数p1,p2,p3…pn的“均倒数”,若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,则$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+$…$+\frac{1}{{{b_{2015}}{b_{2016}}}}$=( )| A. | $\frac{2013}{2014}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{1}{2015}$ |
分析 由“均倒数”的定义,求得Sn,即可求得an,求得bn,利用裂项法即可求得答案.
解答 解:由已知定义,得到$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,
∴a1+a2+…+an=n(2n+1)=Sn,
即Sn=2n2+n.
当n=1时,a1=S1=3.
当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时也成立,
∴an=4n-1;
∴${b_n}=\frac{{{a_n}+1}}{4}$=n.
∵∴bn=n,则$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+$…$+\frac{1}{{{b_{2015}}{b_{2016}}}}$=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{2015}$-$\frac{1}{2016}$)
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$
=1-$\frac{1}{2016}$
=$\frac{2015}{2016}$,
故选C.
点评 本题考查数列的求和,数列的新定义,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
练习册系列答案
相关题目
7.已知函数f(x)=$\left\{\begin{array}{l}sinx,sinx≥cosx\\ cosx,sinx<cosx\end{array}$,下列说法正确的是( )
| A. | 该函数值域为[-1,1] | |
| B. | 当且仅当x=2kπ+$\frac{π}{2}$(k∈Z)时,函数取最大值1 | |
| C. | 该函数是以π为最小正周期的周期函数 | |
| D. | 当π+2kπ<x<2kπ+$\frac{3π}{2}$(k∈Z)时,f(x)<0 |
11.函数y=sinx+sin|x|在区间[-π,π]上的值域为( )
| A. | [-1,1] | B. | [0,2] | C. | [-2,2] | D. | [0,1] |
8.$\overrightarrow a,\overrightarrow b$为非零向量,$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$,则( )
| A. | $\overrightarrow a∥\overrightarrow b$,且$\overrightarrow a与\overrightarrow b$方向相同 | B. | $\overrightarrow a与\overrightarrow b$是方向相反的向量 | ||
| C. | $\overrightarrow a=-\overrightarrow b$ | D. | $\overrightarrow a,\overrightarrow b$无论什么关系均可 |