题目内容
已知在数列{an}中a1=5,a2=2,an=2an-1+3an-2,求{an}前n项和Sn.
考点:数列的求和
专题:等差数列与等比数列
分析:由已知得an+an-1=3(an-1+an-2),令bn-1=an+an-1,则bn=3n-1•b1=7•3n-1,令cn+1=an+1-
×3n,则cn=(-1)n-1•c1=
•(-1)n-1,由此能求出an=
×3n-1+
×(-1)n-1.从而能求出{an}前n项和Sn.
| 7 |
| 4 |
| 13 |
| 4 |
| 7 |
| 4 |
| 13 |
| 4 |
解答:
解:∵a1=5,a2=2,an=2an-1+3an-2,n≥3
∴an+an-1=3(an-1+an-2),
令bn-1=an+an-1,则b1=a2+a1=7,
则bn-1=3•bn-2,
从而bn=3n-1•b1=7•3n-1,
∴an+1+an=7•3n-1,
∴an+1-
×3n=-(an-
×3n-1),
令cn+1=an+1-
×3n,则c1=5-
=
,
则cn=(-1)n-1•c1=
•(-1)n-1,
∴an-
×3n-1=
×(-1)n-1,
∴an=
×3n-1+
×(-1)n-1.
∴当n为奇数时,Sn=
(1+3+32+…+3n-1)+
=
×
+
=
×3n+
.
当n为奇偶时,Sn=
(1+3+32+…+3n-1)=
×
=
×(3n-1).
∴Sn=
.
∴an+an-1=3(an-1+an-2),
令bn-1=an+an-1,则b1=a2+a1=7,
则bn-1=3•bn-2,
从而bn=3n-1•b1=7•3n-1,
∴an+1+an=7•3n-1,
∴an+1-
| 7 |
| 4 |
| 7 |
| 4 |
令cn+1=an+1-
| 7 |
| 4 |
| 7 |
| 4 |
| 13 |
| 4 |
则cn=(-1)n-1•c1=
| 13 |
| 4 |
∴an-
| 7 |
| 4 |
| 13 |
| 4 |
∴an=
| 7 |
| 4 |
| 13 |
| 4 |
∴当n为奇数时,Sn=
| 7 |
| 4 |
| 13 |
| 4 |
=
| 7 |
| 4 |
| 1-3n |
| 1-3 |
| 13 |
| 4 |
=
| 7 |
| 8 |
| 19 |
| 8 |
当n为奇偶时,Sn=
| 7 |
| 4 |
| 7 |
| 4 |
| 1-3n |
| 1-3 |
| 7 |
| 8 |
∴Sn=
|
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意构造法和分类讨论思想的合理运用.
练习册系列答案
相关题目
已知向量
=(m,2),向量
=(2,-3),若|
+
|=|
-
|,则实数m的值是( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、-2 | ||
| B、3 | ||
C、
| ||
| D、-3 |
把实数的有关运算类比到向量运算中,不正确的是( )
A、λa=0⇒λ=0或a=0与λ
| ||||||||
B、a2=|a|2与
| ||||||||
C、|a•b|=|a|•|b|与|
| ||||||||
D、a•b=b•a与
|