题目内容
△ABC的外接圆的圆心为O,半径为2,且
+
+
=
,则
•
等于 .
| OA |
| AB |
| AC |
| 0 |
| CA |
| CB |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由条件可得
+
=
,取BC的中点为D,则
+
=2
=
,求得cos∠BOD=
的值,可得∠BOD的值,从而求得∠BOC的值,再根据
•
=
•(
-
)=
2-
•
,计算求得结果.
| OB |
| OC |
| OA |
| OB |
| OC |
| OD |
| OA |
| OD |
| OB |
| CA |
| CB |
| OB |
. |
| OB |
| OC |
| OB |
| OB |
| OC |
解答:
解:△ABC中,∵
+
+
=
,∴
+
-
=
,
即
+
=
.
取BC的中点为D,则
+
=2
=
,故cos∠BOD=
=
,
∴∠BOD=60°,∴∠BOC=2∠BOD=120°.
则
•
=(
-
)•(
-
)=
•(
-
)=
2-
•
=4-2×2cos120°=6,
故答案为:6.
| OA |
| AB |
| AC |
| 0 |
| OB |
| OC |
| OA |
| 0 |
即
| OB |
| OC |
| OA |
取BC的中点为D,则
| OB |
| OC |
| OD |
| OA |
| OD |
| OB |
| 1 |
| 2 |
∴∠BOD=60°,∴∠BOC=2∠BOD=120°.
则
| CA |
| CB |
| OA |
| OC |
. |
| OB |
| OC |
| OB |
. |
| OB |
| OC |
| OB |
| OB |
| OC |
=4-2×2cos120°=6,
故答案为:6.
点评:本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,求出∠BOC=
120°,是解题的关键,属于基础题.
120°,是解题的关键,属于基础题.
练习册系列答案
相关题目