题目内容
3.分析法证明命题中所说的“执果索因”是指寻求使命题成立的( )| A. | 必要条件 | B. | 充分条件 | C. | 充要条件 | D. | 必要或充分条件 |
分析 利用分析法证明不等式的方法和步骤,结合充分条件的定义,做出判断.
解答 解:用分析法证明不等式成立时用的方法是:要证此不等式成立,只要证明某条件具备即可,也就是说只要某条件具备,
此不等式就一定成立,故某条件具备是不等式成立的充分条件.因此,“执果索因”是指寻求使不等式成立的充分条件,
故选 B.
点评 本题考查用分析法证明不等式的方法,充分条件的定义.
练习册系列答案
相关题目
13.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,则$\overrightarrow{BC}$等于( )
| A. | -$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$ | B. | -$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$ | C. | $\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ | D. | -$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ |
14.已知点A(-1,2),B(2,3),若直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是( )
| A. | (-∞,-$\frac{1}{2}$]∪[2,+∞) | B. | [{-$\frac{1}{2}$,2}] | C. | [-2,$\frac{1}{2}$] | D. | (-∞,-2]∪[$\frac{1}{2}$,+∞) |