题目内容

6.如图,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,点E在A1D上,且E为A1D的中点
(Ⅰ)求证:AA1⊥平面ABCD;
(Ⅱ)求三棱锥D-ACE的体积VD-ACE

分析 (I)使用菱形的性质和勾股定理的逆定理证明AA1⊥AB,AA1⊥AD,从而得出AA1⊥平面ABCD;
(II)设AD的中点为F,连接EF,利用体积公式求三棱锥D-ACE的体积VD-ACE

解答 (Ⅰ)证明:∵底面ABCD是菱形,∠ABC=60°,∴AB=AD=AC=2,
∵AA1=2,∴AA12+AB2=A1B2,∴AA1⊥AB.
同理,AA1⊥AD,又∵AB?平面ABCD,AD?平面ABCD,AB∩AD=A,
∴AA1⊥平面ABCD.
(Ⅱ)解:设AD的中点为F,连接EF,则EF∥AA1,∴EF⊥平面ACD,且EF=1.
∴VD-ACE=VE-ACD=$\frac{1}{3}×1×\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$.

点评 本题考查了线面平行,线面垂直的判定,棱锥的体积计算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网