题目内容
10.下列命题正确的是( )| A. | ?x0∈R,sinx0+cosx0=$\frac{3}{2}$ | |
| B. | ?x≥0且x∈R,2x>x2 | |
| C. | 已知a,b为实数,则a>2,b>2是ab>4的充分条件 | |
| D. | 已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1 |
分析 根据sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$<$\frac{3}{2}$,判断A错误;
举例说明x=2时2x=x2=4,判断B错误;
根据a>2,b>2时ab>4,判断充分性成立C正确;
举例说明a=b=0时$\frac{a}{b}$=-1不成立,判断D错误.
解答 解:对于A,?x∈R,sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$<$\frac{3}{2}$正确,
∴该命题的否定是假命题,A错误;
对于B,当x=2时,2x=x2=4,∴B错误;
对于C,a,b为实数,当a>2,b>2时,ab>4,充分性成立,
是充分条件,C正确;
对于D,a,b为实数,a+b=0时,若a=b=0,则$\frac{a}{b}$=-1不成立,
∴不是充要条件,D错误.
故选:C.
点评 本题考查了命题真假的判断问题,也考查了简易逻辑的应用问题,是基础题目.
练习册系列答案
相关题目
15.设复数z满足(1-i)z=3+i,则z=( )
| A. | 1+2i | B. | 2+2i | C. | 2-i | D. | 1+i |
19.若函数$y=sin({2x+φ})({0<φ<\frac{π}{2}})$的图象的对称中心在区间$({\frac{π}{6},\frac{π}{3}})$内有且只有一个,则φ的值可以是( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
20.“k>$-\frac{{\sqrt{3}}}{3}$”是“直线y=k(x+1)与圆(x-1)2+y2=1相交”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |