题目内容
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为______.
+=1
已知两条平行直线,l1:mx+8y+n=0与l2:2x+my-1=0间的距离为,则直线l1的方程为________.
已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为________.
若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( ).
A.k=,b=-4 B.k=-,b=4
C.k=,b=4 D.k=-,b=-4
已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ).
A.5-4 B.-1 C.6-2 D.
设F1,F2分别是椭圆:+=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=a.
(1)求该椭圆的离心率;
(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.
已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为( ).
A. B. C. D.
设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为________.
已知椭圆C:+=1的右焦点为F,抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=________.