题目内容

若函数f(x)=
x2(sinx+4)+2x+4
x2+1
在区间[-a,a](a>0)上有最大值M和最小值m,则M+m=
 
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用
分析:由题意,f(x)=
x2(sinx+4)+2x+4
x2+1
=
x2sinx+2x
x2+1
+4,令g(x)=
x2sinx+2x
x2+1
,则g(x)是奇函数,利用函数f(x)=
x2(sinx+4)+2x+4
x2+1
在区间[-a,a](a>0)上有最大值M和最小值m,即可得出结论.
解答: 解:由题意,f(x)=
x2(sinx+4)+2x+4
x2+1
=
x2sinx+2x
x2+1
+4,
令g(x)=
x2sinx+2x
x2+1
,则g(x)是奇函数,
∵函数f(x)=
x2(sinx+4)+2x+4
x2+1
在区间[-a,a](a>0)上有最大值M和最小值m,
∴M+m=8.
故答案为:8.
点评:本题考查函数的最值,考查奇函数的性质,考查学生的计算能力,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网