ÌâÄ¿ÄÚÈÝ
11£®¹ØÓÚº¯Êý$f£¨x£©=cos£¨2x-\frac{¦Ð}{3}£©+cos£¨2x+\frac{¦Ð}{6}£©$£¬ÔòÏÂÁÐÃüÌ⣺¢Ùy=f£¨x£©µÄ×î´óֵΪ$\sqrt{2}$£»
¢Úy=f£¨x£©ÔÚ¶¨ÒåÓòÉÏÊÇżº¯Êý£»
¢Ûy=f£¨x£©ÔÚÇø¼ä$[\frac{¦Ð}{24}£¬\frac{13¦Ð}{24}]$ÉÏÊǼõº¯Êý£»
¢Ü½«º¯Êý$y=\sqrt{2}cos2x$µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{24}$¸öµ¥Î»ºó£¬½«Ó뺯Êýy=f£¨x£©µÄͼÏóÖØºÏ£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ۢܣ®
·ÖÎö »¯¼òº¯Êýf£¨x£©ÎªÓàÏÒÐͺ¯Êý£¬Çó³öf£¨x£©µÄ×î´óÖµÓë×îСÕýÖÜÆÚ£¬²¢ÅжÏf£¨x£©µÄµ¥µ÷ÐÔºÍͼÏóÆ½ÒÆÎÊÌ⣮
½â´ð ½â£ºº¯Êýf£¨x£©=cos£¨2x-$\frac{¦Ð}{3}$£©+cos£¨2x+$\frac{¦Ð}{6}$£©
=cos£¨2x-$\frac{¦Ð}{3}$£©+cos£¨2x-$\frac{¦Ð}{3}$+$\frac{¦Ð}{2}$£©
=cos£¨2x-$\frac{¦Ð}{3}$£©-sin£¨2x-$\frac{¦Ð}{3}$£©
=$\sqrt{2}$cos[£¨2x-$\frac{¦Ð}{3}$£©+$\frac{¦Ð}{4}$]
=$\sqrt{2}$cos£¨2x-$\frac{¦Ð}{12}$£©£¬
¶ÔÓÚ¢Ù£¬y=f£¨x£©µÄ×î´óֵΪ$\sqrt{2}$£¬ÃüÌâÕýÈ·£»
¶ÔÓÚ¢Ú£¬f£¨-x£©¡Ùf£¨x£©£¬²»ÊÇżº¯Êý£¬ÃüÌâ´íÎó£»
¶ÔÓÚ¢Û£¬x¡Ê[$\frac{¦Ð}{24}$£¬$\frac{13¦Ð}{24}$]ʱ£¬2x-$\frac{¦Ð}{12}$¡Ê[0£¬¦Ð]£¬
cos£¨2x-$\frac{¦Ð}{12}$£©Êǵ¥µ÷¼õº¯Êý£¬
¡ày=f£¨x£©ÔÚÇø¼ä[$\frac{¦Ð}{24}$£¬$\frac{13¦Ð}{24}$]ÉÏÊǼõº¯Êý£¬ÃüÌâÕýÈ·£»
¶ÔÓڢܣ¬½«º¯Êýy=$\sqrt{2}$cos2xµÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{24}$¸öµ¥Î»£¬
µÃy=$\sqrt{2}$cos2£¨x-$\frac{¦Ð}{24}$£©=$\sqrt{2}$cos£¨2x-$\frac{¦Ð}{12}$£©µÄͼÏó£¬ÃüÌâÕýÈ·£»
×ÛÉÏ£¬ÒÔÉÏÕýÈ·µÄÃüÌâÊǢ٢ۢܣ®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü£®
µãÆÀ ±¾Ì⿼²éÁËÓàÏÒÐͺ¯ÊýµÄͼÏóÓëÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÈý½Çº¯Êý»¯¼òÓëͼÏóÆ½ÒÆÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{6}$ | D£® | $\frac{1}{7}$ |
| A£® | $\frac{3}{4}$ | B£® | $-\frac{3}{4}$ | C£® | $\frac{4}{3}$ | D£® | $-\frac{4}{3}$ |
| A£® | a£¾1 | B£® | a£¼1 | C£® | a£¾2 | D£® | a£¼2 |