题目内容

9.对于2×2的方阵,定义如下的乘法:
$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$×$[\begin{array}{l}{e}&{f}\\{g}&{h}\end{array}]$=$[\begin{array}{l}{ae+bg}&{af+bh}\\{ce+dg}&{cf+dh}\end{array}]$,并设$[\begin{array}{l}{1}&{4}\\{2}&{3}\end{array}]$=$[\begin{array}{l}{{a}_{1}}&{{b}_{1}}\\{{c}_{1}}&{{d}_{1}}\end{array}]$,$[\begin{array}{l}{1}&{4}\\{2}&{3}\end{array}]$×$[\begin{array}{l}{{a}_{n}}&{{b}_{n}}\\{{c}_{n}}&{{d}_{n}}\end{array}]$=$[\begin{array}{l}{{a}_{n+1}}&{{b}_{n+1}}\\{{c}_{n+1}}&{{d}_{n+1}}\end{array}]$(n=1,2,3,…)
(Ⅰ)证明:数列{an+2cn}是等比数列;
(Ⅱ)证明:存在实数λ,使得数列{an-λ•5n}为等比数列,列,并求出{an}的通项公式.

分析 (Ⅰ)由题意可知,an+1=an+4cn,①,cn+1=2an+3cn,②,由①+②×2得,an+1+2cn+1=5(an+2cn),即可证明数列{an+2cn}是等比数列,
(Ⅱ)由①-②得,得到数列{an-cn}是以-1为首项,以-1为等比的等比数列,分别求出an-cn=(-1)n,③,an+2cn=5n,④,
即可求出λ=$\frac{1}{3}$,求出通项公式即可.

解答 证明:(Ⅰ)由题意可知,an+1=an+4cn,①,cn+1=2an+3cn,②
由①+②×2得,an+1+2cn+1=5(an+2cn),a1+2c1=1+2×2=5,
∴数列{an+2cn}是以5为首项,以5为等比的等比数列,
(Ⅱ)由①-②得,an+1-cn+1=-an+cn=-(an-cn),a1-c1=1-2=-1,
∴数列{an-cn}是以-1为首项,以-1为等比的等比数列,
∴an-cn=-1×(-1)n-1=(-1)n,③
由(Ⅰ)知an+2cn=5×5n-1=5n,④,
由③×2+④得,3an=5n+2(-1)n
∴an-$\frac{1}{3}$×5n=$\frac{2}{3}$×(-1)n=-$\frac{2}{3}$×(-1)n-1
∴存在实数λ=$\frac{1}{3}$,使得数列{an-$\frac{1}{3}$•5n}为等比数列,
∴an-$\frac{1}{3}$×5n=$\frac{2}{3}$×(-1)n+$\frac{1}{3}$×5n

点评 本题考查了等比数列的定义,以及新定义的问题,关键是构造方程,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网