ÌâÄ¿ÄÚÈÝ
16£®£¨1£©Çók1k2µÄÖµ£»
£¨2£©¼ÇÖ±ÏßPQ£¬BCµÄбÂÊ·Ö±ðΪkPQ£¬kBC£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃkPQ=¦ËkBC£¿Èô´æÔÚ£¬Çó¦ËÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÇóÖ¤£ºÖ±ÏßAC±Ø¹ýµãQ£®
·ÖÎö £¨1£©ÉèB£¨x0£¬y0£©£¬ÔòC£¨-x0£¬-y0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼ò¼´¿ÉµÃµ½ËùÇóÖµ£»
£¨2£©ÁªÁ¢Ö±ÏßABµÄ·½³ÌºÍÔ²·½³Ì£¬ÇóµÃPµÄ×ø±ê£»ÁªÁ¢Ö±ÏßABµÄ·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃBµÄ×ø±ê£¬ÔÙÇóÖ±ÏßPQ£¬ºÍÖ±ÏßBCµÄбÂÊ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÌÖÂÛÖ±ÏßPQµÄбÂʲ»´æÔںʹæÔÚ£¬ÁªÁ¢Ö±ÏßPQµÄ·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃQµÄ×ø±ê£¬¿ÉµÃAQµÄбÂÊ£¬¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨1£©ÉèB£¨x0£¬y0£©£¬ÔòC£¨-x0£¬-y0£©£¬$\frac{{{x_0}^2}}{4}+{y_0}^2=1$£¬
ËùÒÔ${k_1}{k_2}=\frac{y_0}{{{x_0}-2}}•\frac{y_0}{{{x_0}+2}}=\frac{{{y_0}^2}}{{{x_0}^2-4}}=\frac{{1-\frac{1}{4}{x_0}^2}}{{{x_0}^2-2}}=-\frac{1}{4}$£»
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}y={k_1}£¨x-2£©\\{x^2}+{y^2}=4\end{array}\right.$µÃ$£¨1+k_1^2£©{x^2}-4k_1^2x+4£¨k_1^2-1£©=0$£¬
½âµÃ${x_P}=\frac{2£¨k_1^2-1£©}{1+k_1^2}£¬{y_P}={k_1}£¨{x_P}-2£©=\frac{{-4{k_1}}}{1+k_1^2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}y={k_1}£¨x-\sqrt{2}£©\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$µÃ$£¨1+4k_1^2£©{x^2}-16k_1^2x+4£¨4k_1^2-1£©=0$£¬
½âµÃ${x_B}=\frac{2£¨4k_1^2-1£©}{1+4k_1^2}£¬{y_B}={k_1}£¨{x_B}-\sqrt{2}£©=\frac{{-4{k_1}}}{1+4k_1^2}$£¬
ËùÒÔ${k_{BC}}=\frac{y_B}{x_B}=\frac{{-2{k_1}}}{4k_1^2-1}$£¬${k_{PQ}}=\frac{y_P}{{{x_P}+\frac{6}{5}}}=\frac{{\frac{{-4{k_1}}}{1+k_1^2}}}{{\frac{2£¨k_1^2-1£©}{1+k_1^2}+\frac{6}{5}}}=\frac{{-5{k_1}}}{4k_1^2-1}$£¬
ËùÒÔ${k_{PQ}}=\frac{5}{2}{k_{BC}}$£¬
¹Ê´æÔÚ³£Êý$¦Ë=\frac{5}{2}$£¬Ê¹µÃ${k_{PQ}}=\frac{5}{2}{k_{BC}}$£®
£¨3£©Ö¤Ã÷£ºµ±Ö±ÏßPQÓëxÖᴹֱʱ£¬$Q£¨-\frac{6}{5}£¬-\frac{8}{5}£©$£¬
Ôò${k_{AQ}}=\frac{{-\frac{8}{5}}}{{-\frac{6}{5}-2}}=\frac{1}{2}={k_2}$£¬ËùÒÔÖ±ÏßAC±Ø¹ýµãQ£®
µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬Ö±ÏßPQ·½³ÌΪ£º$y=\frac{{-5{k_1}}}{4k_1^2-1}£¨x+\frac{6}{5}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}y=\frac{{-5{k_1}}}{4k_1^2-1}£¨x+\frac{6}{5}£©\\{x^2}+{y^2}=4\end{array}\right.$£¬
½âµÃ${x_Q}=\frac{-2£¨16k_1^2-1£©}{16k_1^2+1}£¬{y_Q}=\frac{{16{k_1}}}{16k_1^2+1}$£¬
ËùÒÔ${k_{AQ}}=\frac{{\frac{{16{k_1}}}{16k_1^2+1}}}{{\frac{-2£¨16k_1^2-1£©}{16k_1^2+1}-2}}=-\frac{1}{{4{k_1}}}={k_2}$£¬
¹ÊÖ±ÏßAC±Ø¹ýµãQ£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÇóµÃ½»µã£¬¿¼²éÖ±ÏßµÄбÂʺͷ½³ÌµÄÔËÓ㬾ͻ¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | {-1£¬0£¬1} | B£® | {-1£¬1} | C£® | {-1£¬1£¬2} | D£® | {1£¬0} |
| A£® | $2\sqrt{2}$ | B£® | $\sqrt{10}$ | C£® | $\sqrt{5}+1$ | D£® | $2+\sqrt{2}$ |
£¨¢ñ£©Èô´Ó¾¥Ò¶Í¼ÓÐÎíö²µÄ14ÌìÖÐËæ»ú³éÈ¡2Ì죬ÓÃËæ»ú±äÁ¿¦Î±íʾ±»³éÖÐÇÒδȼ·Å±ÞÅÚµÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£»
£¨¢ò£©Í¨¹ý¾¥Ò¶Í¼ÌîдÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÓжà´óµÄ°ÑÎÕ¿ÉÒÔÈÏΪȼ·Å±ÞÅÚÓë²úÉúÎíö²Óйأ¿
| ȼ·Å | δȼ·Å | ºÏ¼Æ | |
| ÓÐÎíö² | |||
| ÎÞÎíö² | |||
| ºÏ¼Æ |
¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£º
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| x | 16 | 17 | 18 | 19 |
| y | 50 | 34 | 41 | 31 |
| A£® | 26¸ö | B£® | 27¸ö | C£® | 28¸ö | D£® | 29¸ö |