ÌâÄ¿ÄÚÈÝ

16£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²O£ºx2+y2=4£¬ÍÖÔ²C£º$\frac{x^2}{4}+{y^2}=1$£¬AΪÍÖÔ²ÓÒ¶¥µã£®¹ýÔ­µãOÇÒÒìÓÚ×ø±êÖáµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚB£¬CÁ½µã£¬Ö±ÏßABÓëÔ²OµÄÁíÒ»½»µãΪP£¬Ö±ÏßPDÓëÔ²OµÄÁíÒ»½»µãΪQ£¬ÆäÖÐ$D£¨-\frac{6}{5}£¬0£©$£®ÉèÖ±ÏßAB£¬ACµÄбÂÊ·Ö±ðΪk1£¬k2£®
£¨1£©Çók1k2µÄÖµ£»
£¨2£©¼ÇÖ±ÏßPQ£¬BCµÄбÂÊ·Ö±ðΪkPQ£¬kBC£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃkPQ=¦ËkBC£¿Èô´æÔÚ£¬Çó¦ËÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÇóÖ¤£ºÖ±ÏßAC±Ø¹ýµãQ£®

·ÖÎö £¨1£©ÉèB£¨x0£¬y0£©£¬ÔòC£¨-x0£¬-y0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼ò¼´¿ÉµÃµ½ËùÇóÖµ£»
£¨2£©ÁªÁ¢Ö±ÏßABµÄ·½³ÌºÍÔ²·½³Ì£¬ÇóµÃPµÄ×ø±ê£»ÁªÁ¢Ö±ÏßABµÄ·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃBµÄ×ø±ê£¬ÔÙÇóÖ±ÏßPQ£¬ºÍÖ±ÏßBCµÄбÂÊ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÌÖÂÛÖ±ÏßPQµÄбÂʲ»´æÔںʹæÔÚ£¬ÁªÁ¢Ö±ÏßPQµÄ·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃQµÄ×ø±ê£¬¿ÉµÃAQµÄбÂÊ£¬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÉèB£¨x0£¬y0£©£¬ÔòC£¨-x0£¬-y0£©£¬$\frac{{{x_0}^2}}{4}+{y_0}^2=1$£¬
ËùÒÔ${k_1}{k_2}=\frac{y_0}{{{x_0}-2}}•\frac{y_0}{{{x_0}+2}}=\frac{{{y_0}^2}}{{{x_0}^2-4}}=\frac{{1-\frac{1}{4}{x_0}^2}}{{{x_0}^2-2}}=-\frac{1}{4}$£»            
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}y={k_1}£¨x-2£©\\{x^2}+{y^2}=4\end{array}\right.$µÃ$£¨1+k_1^2£©{x^2}-4k_1^2x+4£¨k_1^2-1£©=0$£¬
½âµÃ${x_P}=\frac{2£¨k_1^2-1£©}{1+k_1^2}£¬{y_P}={k_1}£¨{x_P}-2£©=\frac{{-4{k_1}}}{1+k_1^2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}y={k_1}£¨x-\sqrt{2}£©\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$µÃ$£¨1+4k_1^2£©{x^2}-16k_1^2x+4£¨4k_1^2-1£©=0$£¬
½âµÃ${x_B}=\frac{2£¨4k_1^2-1£©}{1+4k_1^2}£¬{y_B}={k_1}£¨{x_B}-\sqrt{2}£©=\frac{{-4{k_1}}}{1+4k_1^2}$£¬
ËùÒÔ${k_{BC}}=\frac{y_B}{x_B}=\frac{{-2{k_1}}}{4k_1^2-1}$£¬${k_{PQ}}=\frac{y_P}{{{x_P}+\frac{6}{5}}}=\frac{{\frac{{-4{k_1}}}{1+k_1^2}}}{{\frac{2£¨k_1^2-1£©}{1+k_1^2}+\frac{6}{5}}}=\frac{{-5{k_1}}}{4k_1^2-1}$£¬
ËùÒÔ${k_{PQ}}=\frac{5}{2}{k_{BC}}$£¬
¹Ê´æÔÚ³£Êý$¦Ë=\frac{5}{2}$£¬Ê¹µÃ${k_{PQ}}=\frac{5}{2}{k_{BC}}$£®           
£¨3£©Ö¤Ã÷£ºµ±Ö±ÏßPQÓëxÖᴹֱʱ£¬$Q£¨-\frac{6}{5}£¬-\frac{8}{5}£©$£¬
Ôò${k_{AQ}}=\frac{{-\frac{8}{5}}}{{-\frac{6}{5}-2}}=\frac{1}{2}={k_2}$£¬ËùÒÔÖ±ÏßAC±Ø¹ýµãQ£®
µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬Ö±ÏßPQ·½³ÌΪ£º$y=\frac{{-5{k_1}}}{4k_1^2-1}£¨x+\frac{6}{5}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}y=\frac{{-5{k_1}}}{4k_1^2-1}£¨x+\frac{6}{5}£©\\{x^2}+{y^2}=4\end{array}\right.$£¬
½âµÃ${x_Q}=\frac{-2£¨16k_1^2-1£©}{16k_1^2+1}£¬{y_Q}=\frac{{16{k_1}}}{16k_1^2+1}$£¬
ËùÒÔ${k_{AQ}}=\frac{{\frac{{16{k_1}}}{16k_1^2+1}}}{{\frac{-2£¨16k_1^2-1£©}{16k_1^2+1}-2}}=-\frac{1}{{4{k_1}}}={k_2}$£¬
¹ÊÖ±ÏßAC±Ø¹ýµãQ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÇóµÃ½»µã£¬¿¼²éÖ±ÏßµÄбÂʺͷ½³ÌµÄÔËÓ㬾ͻ¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø