题目内容

14.已知数列{an}的通项为an=$\frac{1}{cosncos(n+1)}$(n∈N*),求其前n项和Sn

分析 由$\frac{sin1}{cosncos(n+1)}$=$\frac{sin(n+1-n)}{cosncos(n+1)}$=tan(n+1)-tann,可得an=$\frac{1}{sin1}$[tan(n+1)-tann],即可得出.

解答 解:由$\frac{sin1}{cosncos(n+1)}$=$\frac{sin(n+1-n)}{cosncos(n+1)}$=$\frac{sin(n+1)cosn-cos(n+1)sinn}{cosncos(n+1)}$=tan(n+1)-tann,
∴an=$\frac{1}{cosncos(n+1)}$=$\frac{1}{sin1}$[tan(n+1)-tann],
∴其前n项和Sn=$\frac{1}{sin1}$[(tan2-tan1)+(tan3-tan2)+…+tan(n+1)-tann]
=$\frac{1}{sin1}$[tan(n+1)-tan1].

点评 本题考查了数列的通项公式及其前n项和公式、“裂项求和”方法、和差化积、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网