ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖªÍÖÔ²§¤£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã·Ö±ðΪF1¡¢F2£¬PÊÇÍÖÔ²ÉÏλÓÚµÚÒ»ÏóÏÞÄڵĵ㣬PQ¡ÍxÖᣬ´¹×ãΪQ£¬ÇÒ|F1F2|=6£¬¡ÏPF1F2=arccos$\frac{5\sqrt{3}}{9}$£¬¡÷PF1F2µÄÃæ»ýΪ3$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²§¤µÄ·½³Ì£»
£¨2£©ÈôMÊÇÍÖÔ²Éϵ͝µã£¬Çó|MQ|µÄ×î´óÖµ£®²¢Çó³ö|MQ|È¡µÃ×î´óֵʱMµÄ×ø±ê£®

·ÖÎö ÓÉ

½â´ð ½â£º£¨1£©ÓÉ¡÷PF1F2µÄÃæ»ýΪ3$\sqrt{2}$£¬|F1F2|=6£¬
µÃ$\frac{1}{2}¡Á6¡Á{y}_{P}=3\sqrt{2}$£¬¡à${y}_{P}=\sqrt{2}$£¬
ÓÖ¡ÏPF1F2=arccos$\frac{5\sqrt{3}}{9}$£¬¡à$|{F}_{1}Q|=\frac{5\sqrt{3}}{9}|P{F}_{1}|$£¬
ÔòÓÉ$£¨\frac{5\sqrt{3}}{9}|P{F}_{1}|£©^{2}+£¨\sqrt{2}£©^{2}=|P{F}_{1}{|}^{2}$£¬½âµÃ$|P{F}_{1}|=3\sqrt{3}$£®
¡à$|P{F}_{2}{|}^{2}=|P{F}_{1}{|}^{2}+4{c}^{2}-2•2c•|P{F}_{1}|•\frac{5\sqrt{3}}{9}$£¬½âµÃ£º$|P{F}_{2}|=\sqrt{3}$£®
¡à2a=4$\sqrt{3}$£¬a=2$\sqrt{3}$£¬c=3£¬b2=a2-c2=3£®
¡àÍÖÔ²§¤µÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ£¨1£©Öª£¬${y}_{P}=\sqrt{2}$£¬´úÈë$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£¬¿ÉµÃxp=2£¬
¡àQ£¨2£¬0£©£¬ÉèM£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{12}+\frac{{{y}_{0}}^{2}}{3}=1$£¬¡à${{y}_{0}}^{2}=3-\frac{{{x}_{0}}^{2}}{4}$£®
¡à|MQ|=$\sqrt{£¨{x}_{0}-2£©^{2}+{{y}_{0}}^{2}}$=$\sqrt{{{x}_{0}}^{2}-4{x}_{0}+4+3-\frac{{{x}_{0}}^{2}}{4}}$=$\sqrt{\frac{3}{4}{{x}_{0}}^{2}-4{x}_{0}+7}$£®
¡ß$-2\sqrt{3}¡Ü{x}_{0}¡Ü2\sqrt{3}$£¬¡àµ±${x}_{0}=-2\sqrt{3}$ʱ£¬$|MQ{|}_{max}=\sqrt{16+8\sqrt{3}}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø