题目内容
设数列{an}满足
+
+…+
=n(n≥1).
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)求数列{
}的前n项和Sn.
| 1 |
| log3a1 |
| 2 |
| log3a2 |
| n |
| log3an |
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)求数列{
| n |
| an |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)当n≥2时,
+
+…+
=n-1.与
+
+…+
=n相减,能求出an=3n.
(2)由
=n•(
)n,利用错位相减法能求出数列{
}的前n项和Sn.
| 1 |
| log3a1 |
| 2 |
| log3a2 |
| n-1 |
| log3an-1 |
| 1 |
| log3a1 |
| 2 |
| log3a2 |
| n |
| log3an |
(2)由
| n |
| an |
| 1 |
| 3 |
| n |
| an |
解答:
解:(1)当n=1时,
=1,解得a1=3,
当n≥2时,
+
+…+
=n-1.
与
+
+…+
=n相减,得
=1,
∴an=3n,
综上,an=3n.(n∈N*).
(2)
=n•(
)n,
∴Sn=
+2•(
)2+…+(n-1)•(
)n-1+n•(
)n,①
Sn=(
)2+2•(
)3+…+(n-1)•(
)n+n•(
)n+1,②
①-②,得:
Sn=
+(
)2+…+(
)n-1+(
)n-n(
)n+1
=
-n(
)n+1
=
[1-(
)n]-n•(
)n+1,
∴Sn=
[1-(
)n]-
n(
)n+1=
.
| 1 |
| log3a1 |
当n≥2时,
| 1 |
| log3a1 |
| 2 |
| log3a2 |
| n-1 |
| log3an-1 |
与
| 1 |
| log3a1 |
| 2 |
| log3a2 |
| n |
| log3an |
| n |
| log3an |
∴an=3n,
综上,an=3n.(n∈N*).
(2)
| n |
| an |
| 1 |
| 3 |
∴Sn=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
①-②,得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| ||||
1-
|
| 1 |
| 3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
∴Sn=
| 3 |
| 4 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 3 |
3-(2n+3)•(
| ||
| 4 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
若函数f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1]时f(x)=1-x2,函数g(x)=
,则函数h(x)=f(x)-g(x)在区间(0,+∞)内的零点的个数为( )
|
| A、8 | B、9 | C、10 | D、13 |
抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,O为坐标原点,则
的最小值是( )
| |PF| |
| |PO| |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|